4 research outputs found

    Investigation of crystalline lens overshooting: ex vivo experiment and optomechanical simulation results

    Get PDF
    Introduction: Crystalline lens overshooting refers to a situation in which the lens momentarily shifts too much from its typical location immediately after stopping the rotational movement of the eye globe. This movement can be observed using an optical technique called Purkinje imaging.Methods: In this work, an experimental setup was designed to reproduce this effect ex vivo using a fresh porcine eye. The sample was rotated 90° around its centroid using a high-velocity rotation stage, and the Purkinje image sequences were recorded, allowing us to quantify the overshooting effect. The numerical part of the study consisted of developing a computational model of the eye, based on the finite element method, that allowed us to understand the biomechanical behavior of the different tissues in this dynamic scenario. A 2D fluid–structure interaction model of the porcine eye globe, considering both the solid parts and humors, was created to reproduce the experimental outcomes.Results: Outputs of the simulation were analyzed using an optical simulation software package to assess whether the mechanical model behaves optically like the real ex vivo eye. The simulation predicted the experimental results by carefully adjusting the mechanical properties of the zonular fibers and the damping factor.Conclusion: This study effectively demonstrates the importance of characterizing the dynamic mechanical properties of the eye tissues to properly comprehend and predict the overshooting effect

    Preclinical studies in small animals for advanced drug delivery using hyperthermia and intravital microscopy

    No full text
    This paper presents three devices suitable for the preclinical application of hyperthermia via the simultaneous high-resolution imaging of intratumoral events. (Pre)clinical studies have con-firmed that the tumor micro-environment is sensitive to the application of local mild hyperthermia. Therefore, heating is a promising adjuvant to aid the efficacy of radiotherapy or chemotherapy. More so, the application of mild hyperthermia is a useful stimulus for triggered drug release from heat-sensitive nanocarriers. The response of thermosensitive nanoparticles to hyperthermia and en-suing intratumoral kinetics are considerably complex in both space and time. To obtain better insight into intratumoral processes, longitudinal imaging (preferable in high spatial and temporal resolution) is highly informative. Our devices are based on (i) an external electric heating adaptor for the dorsal skinfold model, (ii) targeted radiofrequency application, and (iii) a microwave an-tenna for heating of internal tumors. These models, while of some technical complexity, significantly add to the understanding of effects of mild hyperthermia warranting implementation in research on hyperthermia

    Preclinical Studies in Small Animals for Advanced Drug Delivery Using Hyperthermia and Intravital Microscopy

    Get PDF
    This paper presents three devices suitable for the preclinical application of hyperthermia via the simultaneous high-resolution imaging of intratumoral events. (Pre)clinical studies have confirmed that the tumor micro-environment is sensitive to the application of local mild hyperthermia. Therefore, heating is a promising adjuvant to aid the efficacy of radiotherapy or chemotherapy. More so, the application of mild hyperthermia is a useful stimulus for triggered drug release from heat-sensitive nanocarriers. The response of thermosensitive nanoparticles to hyperthermia and ensuing intratumoral kinetics are considerably complex in both space and time. To obtain better insight into intratumoral processes, longitudinal imaging (preferable in high spatial and temporal resolution) is highly informative. Our devices are based on (i) an external electric heating adaptor for the dorsal skinfold model, (ii) targeted radiofrequency application, and (iii) a microwave antenna for heating of internal tumors. These models, while of some technical complexity, significantly add to the understanding of effects of mild hyperthermia warranting implementation in research on hyperthermia

    Preclinical studies in small animals for advanced drug delivery using hyperthermia and intravital microscopy

    No full text
    This paper presents three devices suitable for the preclinical application of hyperthermia via the simultaneous high-resolution imaging of intratumoral events. (Pre)clinical studies have con-firmed that the tumor micro-environment is sensitive to the application of local mild hyperthermia. Therefore, heating is a promising adjuvant to aid the efficacy of radiotherapy or chemotherapy. More so, the application of mild hyperthermia is a useful stimulus for triggered drug release from heat-sensitive nanocarriers. The response of thermosensitive nanoparticles to hyperthermia and en-suing intratumoral kinetics are considerably complex in both space and time. To obtain better insight into intratumoral processes, longitudinal imaging (preferable in high spatial and temporal resolution) is highly informative. Our devices are based on (i) an external electric heating adaptor for the dorsal skinfold model, (ii) targeted radiofrequency application, and (iii) a microwave an-tenna for heating of internal tumors. These models, while of some technical complexity, significantly add to the understanding of effects of mild hyperthermia warranting implementation in research on hyperthermia.</p
    corecore