24 research outputs found
Accretion geometry of the neutron star low mass X-ray binary Cyg X-2 from X-ray polarization measurements
We report spectro-polarimetric results of an observational campaign of the
bright neutron star low-mass X-ray binary Cyg X-2 simultaneously observed by
IXPE, NICER and INTEGRAL. Consistently with previous results, the broad-band
spectrum is characterized by a lower-energy component, attributed to the
accretion disc with 1 keV, plus unsaturated
Comptonization in thermal plasma with temperature keV and
optical depth , assuming a slab geometry. We measure the
polarization degree in the 2-8 keV band per cent and
polarization angle , consistent with the
previous X-ray polarimetric measurements by OSO-8 as well as with the direction
of the radio jet which was earlier observed from the source. While polarization
of the disc spectral component is poorly constrained with the IXPE data, the
Comptonized emission has a polarization degree per cent and a
polarization angle aligned with the radio jet. Our results strongly favour a
spreading layer at the neutron star surface as the main source of the
polarization signal. However, we cannot exclude a significant contribution from
reflection off the accretion disc, as indicated by the presence of the iron
fluorescence line.Comment: 10 pages, 7 figures, accepted for publication in MNRA
Polarization Properties of the Weakly Magnetized Neutron Star X-Ray Binary GS 1826-238 in the High Soft State
The launch of the Imaging X-ray Polarimetry Explorer (IXPE) on 2021 December 9 has opened a new window in X-ray astronomy. We report here the results of the first IXPE observation of a weakly magnetized neutron star, GS 1826−238, performed on 2022 March 29-31 when the source was in a high soft state. An upper limit (99.73% confidence level) of 1.3% for the linear polarization degree is obtained over the IXPE 2-8 keV energy range. Coordinated INTEGRAL and NICER observations were carried out simultaneously with IXPE. The spectral parameters obtained from the fits to the broadband spectrum were used as inputs for Monte Carlo simulations considering different possible geometries of the X-ray emitting region. Comparing the IXPE upper limit with these simulations, we can put constraints on the geometry and inclination angle of GS 1826-238
Discovery of X-Ray Polarization from the Black Hole Transient Swift J1727.8−1613
\ua9 2023. The Author(s). Published by the American Astronomical Society.We report the first detection of the X-ray polarization of the bright transient Swift J1727.8−1613 with the Imaging X-ray Polarimetry Explorer. The observation was performed at the beginning of the 2023 discovery outburst, when the source resided in the bright hard state. We find a time- and energy-averaged polarization degree of 4.1% \ub1 0.2% and a polarization angle of 2.\ub02 \ub1 1.\ub03 (errors at 68% confidence level; this translates to ∼20σ significance of the polarization detection). This finding suggests that the hot corona emitting the bulk of the detected X-rays is elongated, rather than spherical. The X-ray polarization angle is consistent with that found in submillimeter wavelengths. Since the submillimeter polarization was found to be aligned with the jet direction in other X-ray binaries, this indicates that the corona is elongated orthogonal to the jet
Tracking the X-Ray Polarization of the Black Hole Transient Swift J1727.8-1613 during a State Transition
\ua9 2024. The Author(s). Published by the American Astronomical Society.We report on an observational campaign on the bright black hole (BH) X-ray binary Swift J1727.8-1613 centered around five observations by the Imaging X-ray Polarimetry Explorer. These observations track for the first time the evolution of the X-ray polarization of a BH X-ray binary across a hard to soft state transition. The 2-8 keV polarization degree decreased from ∼4% to ∼3% across the five observations, but the polarization angle remained oriented in the north-south direction throughout. Based on observations with the Australia Telescope Compact Array, we find that the intrinsic 7.25 GHz radio polarization aligns with the X-ray polarization. Assuming the radio polarization aligns with the jet direction (which can be tested in the future with higher-spatial-resolution images of the jet), our results imply that the X-ray corona is extended in the disk plane, rather than along the jet axis, for the entire hard intermediate state. This in turn implies that the long (≳10 ms) soft lags that we measure with the Neutron star Interior Composition ExploreR are dominated by processes other than pure light-crossing delays. Moreover, we find that the evolution of the soft lag amplitude with spectral state does not follow the trend seen for other sources, implying that Swift J1727.8-1613 is a member of a hitherto undersampled subpopulation
X-ray Polarization of the Eastern Lobe of SS 433
How astrophysical systems translate the kinetic energy of bulk motion into
the acceleration of particles to very high energies is a pressing question. SS
433 is a microquasar that emits TeV gamma-rays indicating the presence of
high-energy particles. A region of hard X-ray emission in the eastern lobe of
SS 433 was recently identified as an acceleration site. We observed this region
with the Imaging X-ray Polarimetry Explorer and measured a polarization degree
in the range 38% to 77%. The high polarization degree indicates the magnetic
field has a well ordered component if the X-rays are due to synchrotron
emission. The polarization angle is in the range -12 to +10 degrees (east of
north) which indicates that the magnetic field is parallel to the jet. Magnetic
fields parallel to the bulk flow have also been found in supernova remnants and
the jets of powerful radio galaxies. This may be caused by interaction of the
flow with the ambient medium.Comment: 8 pages, accepted in the Astrophysical Journal Letter
The first X-ray polarimetric observation of the black hole binary LMC X-1
We report on an X-ray polarimetric observation of the high-mass X-ray binary
LMC X-1 in the high/soft state, obtained by the Imaging X-ray Polarimetry
Explorer (IXPE) in October 2022. The measured polarization is below the minimum
detectable polarization of 1.1 per cent (at the 99 per cent confidence level).
Simultaneously, the source was observed with the NICER, NuSTAR and SRG/ART-XC
instruments, which enabled spectral decomposition into a dominant thermal
component and a Comptonized one. The low 2-8 keV polarization of the source did
not allow for strong constraints on the black-hole spin and inclination of the
accretion disc. However, if the orbital inclination of about 36 degrees is
assumed, then the upper limit is consistent with predictions for pure thermal
emission from geometrically thin and optically thick discs. Assuming the
polarization degree of the Comptonization component to be 0, 4, or 10 per cent,
and oriented perpendicular to the polarization of the disc emission (in turn
assumed to be perpendicular to the large scale ionization cone orientation
detected in the optical band), an upper limit to the polarization of the disc
emission of 1.0, 0.9 or 0.9 per cent, respectively, is found (at the 99 per
cent confidence level).Comment: 12 pages, 9 figures, 4 tables. Accepted for publication in MNRA
Tracking the X-ray Polarization of the Black Hole Transient Swift J1727.8-1613 during a State Transition
We report on a campaign on the bright black hole X-ray binary Swift
J1727.81613 centered around five observations by the Imaging X-ray
Polarimetry Explorer (IXPE). This is the first time it has been possible to
trace the evolution of the X-ray polarization of a black hole X-ray binary
across a hard to soft state transition. The 2--8 keV polarization degree slowly
decreased from 4\% to 3\% across the five observations, but
remained in the North-South direction throughout. Using the Australia Telescope
Compact Array (ATCA), we measure the intrinsic 7.25 GHz radio polarization to
align in the same direction. Assuming the radio polarization aligns with the
jet direction (which can be tested in the future with resolved jet images),
this implies that the X-ray corona is extended in the disk plane, rather than
along the jet axis, for the entire hard intermediate state. This in turn
implies that the long (10 ms) soft lags that we measure with the
Neutron star Interior Composition ExploreR (NICER) are dominated by processes
other than pure light-crossing delays. Moreover, we find that the evolution of
the soft lag amplitude with spectral state differs from the common trend seen
for other sources, implying that Swift J1727.81613 is a member of a hitherto
under-sampled sub-population.Comment: Submitted to ApJ. 20 pages, 8 figure