845 research outputs found

    Highlights on top quark measurements from CMS

    Full text link
    Recent results from the CMS Collaboration using top quarks are presented. These results are based on partial datasets collected by the CMS Collaboration during the LHC Run 2, at a center-of-mass energy of 13 TeV. This document includes the first measurement of production in association with charm quarks, the first direct measurement of the third generation of the CKM matrix elements, the investigation of the running of the top quark mass, search for CP violation in top quark production, measurement of the forward-backward asymmetry in production at the LHC, and the first global approach in constraining EFT operator coefficients using top quarks

    Search for top quark partners with charge 5/3 in the same-sign dilepton and single-lepton final states in proton-proton collisions at s=13\sqrt{s} = 13 TeV

    Full text link
    A search for the pair production of heavy fermionic partners of the top quark with charge 5/3 (X5/3X_{5/3}) is performed in proton-proton collisions at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The data sample analyzed corresponds to an integrated luminosity of 35.9 fb−1fb^{−1}. The X5/3X_{5/3} quark is assumed always to decay into a top quark and a W boson. Both the right-handed and left-handed X5/3X_{5/3} couplings to the W boson are considered. Final states with either a pair of same-sign leptons or a single lepton are studied. No significant excess of events is observed above the expected standard model background. Lower limits at 95% confidence level on the X5/3X_{5/3} quark mass are set at 1.33 and 1.30 TeV respectively for the case of right-handed and left-handed couplings to W bosons in a combination of the same-sign dilepton and single-lepton final states

    Search for long-lived particles decaying into displaced jets in proton-proton collisions at s=13\sqrt {s} = 13 TeV

    Full text link
    A search for long-lived particles decaying into jets is presented. Data were collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb−1fb^{−1}. The search examines the distinctive topology of displaced tracks and secondary vertices. The selected events are found to be consistent with standard model predictions. For a simplified model in which long-lived neutral particles are pair produced and decay to two jets, pair production cross sections larger than 0.2 fb are excluded at 95% confidence level for a long-lived particle mass larger than 1000 GeV and proper decay lengths between 3 and 130 mm. Several supersymmetry models with gauge-mediated supersymmetry breaking or R-parity violation, where pair-produced long-lived gluinos or top squarks decay to several final-state topologies containing displaced jets, are also tested. For these models, in the mass ranges above 200 GeV, gluino masses up to 2300–2400 GeV and top squark masses up to 1350–1600 GeV are excluded for proper decay lengths approximately between 10 and 100 mm. These are the most restrictive limits to date on these models

    Search for Narrow Hγ\gamma Resonances in Proton-Proton Collisions at s=13\sqrt {s} = 13 TeV

    Full text link
    A search for heavy, narrow resonances decaying to a Higgs boson and a photon (Hγ) has been performed in proton-proton collision data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9  fb−1fb^{−1} collected with the CMS detector at the LHC in 2016. Events containing a photon and a Lorentz-boosted hadronically decaying Higgs boson reconstructed as a single, large-radius jet are considered, and the γ+jet invariant mass spectrum is analyzed for the presence of narrow resonances. To increase the sensitivity of the search, events are categorized depending on whether or not the large-radius jet can be identified as a result of the merging of two jets originating from b quarks. Results in both categories are found to agree with the predictions of the standard model. Upper limits on the production rate of Hγ resonances are set as a function of their mass in the range of 720–3250 GeV, representing the most stringent constraints to date
    • …
    corecore