7 research outputs found

    Multi-protocol IoT network reconnaissance

    Full text link
    Network reconnaissance is a core security functionality, which can be used to detect hidden unauthorized devices or to identify missing devices. Currently, there is a lack of network reconnaissance tools capable of discovering Internet of Things (IoT) devices across multiple protocols. To bridge this gap, we introduce IoT-Scan, an extensible IoT network reconnaissance tool. IoT - Scan is based on software-defined radio (SDR) technology, which allows for a flexible implementation of radio protocols. We propose passive, active, multi-channel, and multi-protocol scanning algorithms to speed up the discovery of devices with IoT-Scan. We implement the scanning algorithms and compare their performance with four popular IoT protocols: Zigbee, Bluetooth LE, Z-Wave, and LoRa. Through experiments with dozens of IoT devices, we demonstrate that our implementation experiences minimal packet losses, and achieves performance near a theoretical benchmark.CNS-1908087 - National Science Foundation; CCF-2006628 - National Science Foundation; ECCS-2128517 - National Science Foundation; CNS-1717858 - National Science FoundationAccepted manuscrip

    The antibody aducanumab reduces Aβ plaques in Alzheimer's disease

    Full text link
    Alzheimer's disease (AD) is characterized by deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain, accompanied by synaptic dysfunction and neurodegeneration. Antibody-based immunotherapy against Aβ to trigger its clearance or mitigate its neurotoxicity has so far been unsuccessful. Here we report the generation of aducanumab, a human monoclonal antibody that selectively targets aggregated Aβ. In a transgenic mouse model of AD, aducanumab is shown to enter the brain, bind parenchymal Aβ, and reduce soluble and insoluble Aβ in a dose-dependent manner. In patients with prodromal or mild AD, one year of monthly intravenous infusions of aducanumab reduces brain Aβ in a dose- and time-dependent manner. This is accompanied by a slowing of clinical decline measured by Clinical Dementia Rating-Sum of Boxes and Mini Mental State Examination scores. The main safety and tolerability findings are amyloid-related imaging abnormalities. These results justify further development of aducanumab for the treatment of AD. Should the slowing of clinical decline be confirmed in ongoing phase 3 clinical trials, it would provide compelling support for the amyloid hypothesis

    Current state of Alzheimer’s fluid biomarkers

    No full text
    corecore