181 research outputs found

    Tsunami-Related Data: A Review of Available Repositories Used in Scientific Literature

    Get PDF
    Various organizations and institutions store large volumes of tsunami-related data, whose availability and quality should benefit society, as it improves decision making before the tsunami occurrence, during the tsunami impact, and when coping with the aftermath. However, the existing digital ecosystem surrounding tsunami research prevents us from extracting the maximum benefit from our research investments. The main objective of this study is to explore the field of data repositories providing secondary data associated with tsunami research and analyze the current situation. We analyze the mutual interconnections of references in scientific studies published in the Web of Science database, governmental bodies, commercial organizations, and research agencies. A set of criteria was used to evaluate content and searchability. We identified 60 data repositories with records used in tsunami research. The heterogeneity of data formats, deactivated or nonfunctional web pages, the generality of data repositories, or poor dataset arrangement represent the most significant weak points. We outline the potential contribution of ontology engineering as an example of computer science methods that enable improvements in tsunami-related data management

    Single-order-parameter description of glass-forming liquids:A one-frequency test

    Get PDF
    Thermo-viscoelastic linear-response functions are calculated from the master equation describing viscous liquid inherent dynamics. From the imaginary parts of the frequency-dependent isobaric specific heat, isothermal compressibility, and isobaric thermal expansion coefficient, we define a "linear dynamic Prigogine-Defay ratio" with the property that if this quantity is unity atone frequency, then it is unity at all frequencies. This happens if and only if there is a single-order-parameter description of the thermo-viscoelastic linear responses via an order parameter (which may be non-exponential in time). Generalizations to other cases of thermodynamic control parameters than temperature and pressure are treated in an Appendix.Comment: Replaces arXiv:cond-mat/040570

    Complexity Theory for a New Managerial Paradigm: A Research Framework

    Get PDF
    In this work, we supply a theoretical framework of how organizations can embed complexity management and sustainable development into their policies and actions. The proposed framework may lead to a new management paradigm, attempting to link the main concepts of complexity theory, change management, knowledge management, sustainable development, and cybernetics. We highlight how the processes of organizational change have occurred as a result of the move to adapt to the changes in the various global and international business environments and how this transformation has led to the shift toward the present innovation economy. We also point how organizational change needs to deal with sustainability, so that the change may be consistent with present needs, without compromising the future

    The Peter Pan paradigm

    Get PDF
    Genetic and environmental agents that disrupt organogenesis are numerous and well described. Less well established, however, is the role of delay in the developmental processes that yield functionally immature tissues at birth. Evidence is mounting that organs do not continue to develop postnatally in the context of these organogenesis insults, condemning the patient to utilize under-developed tissues for adult processes. These poorly differentiated organs may appear histologically normal at birth but with age may deteriorate revealing progressive or adult-onset pathology. The genetic and molecular underpinning of the proposed paradigm reveals the need for a comprehensive systems biology approach to evaluate the role of maternal-fetal environment on organogenesis

    Brain Complexity: Analysis, Models and Limits of Understanding

    Full text link
    Abstract. Manifold initiatives try to utilize the operational principles of organisms and brains to develop alternative, biologically inspired computing paradigms. This paper reviews key features of the standard method applied to complexity in the cognitive and brain sciences, i.e. decompositional analysis. Projects investigating the nature of computations by cortical columns are discussed which exemplify the application of this standard method. New findings are mentioned indicating that the concept of the basic uniformity of the cortex is untenable. The claim is discussed that non-decomposability is not an intrinsic property of complex, integrated systems but is only in our eyes, due to insufficient mathematical techniques. Using Rosen’s modeling relation, the scientific analysis method itself is made a subject of discussion. It is concluded that the fundamental assumption of cognitive science, i.e., cognitive and other complex systems are decomposable, must be abandoned.
    corecore