22 research outputs found

    The application of winning key metrics in a metallurgical firm

    Get PDF
    This article is focused on creating a system of metrics and its application in a metallurgical firm. Its aim is to highlight the dangers associated with the creation and application of an effective system of metrics. Its objective is also to demonstrate the process (initial steps) in the development of this system in the real family metallurgical firm. In the experimental part an example of causal links among key metrics in the chosen metallurgical firm is presented. Risks associated with the selection of appropriate metrics are presented for discussion

    The application of winning key metrics in a metallurgical firm

    Get PDF
    This article is focused on creating a system of metrics and its application in a metallurgical firm. Its aim is to highlight the dangers associated with the creation and application of an effective system of metrics. Its objective is also to demonstrate the process (initial steps) in the development of this system in the real family metallurgical firm. In the experimental part an example of causal links among key metrics in the chosen metallurgical firm is presented. Risks associated with the selection of appropriate metrics are presented for discussion

    Biological and structural characterization of theMycobacterium smegmatis nitroreductase NfnB, and its rolein benzothiazinone resistance

    Get PDF
    Tuberculosis is still a leading cause of death in developing countries, for which there is an urgent need for new pharmacological agents. The synthesis of the novel antimycobacterial drug class of benzothiazinones (BTZs) and the identification of their cellular target as DprE1 (Rv3790), a component of the decaprenylphosphoryl-b-D-ribose 2'-epimerase complex, have been reported recently. Here, we describe the identification and characterization of a novel resistance mechanism to BTZ in Mycobacterium smegmatis. The overexpression of the nitroreductase NfnB leads to the inactivation of the drug by reduction of a critical nitro-group to an amino-group. The direct involvement of NfnB in the inactivation of the lead compound BTZ043 was demonstrated by enzymology, microbiological assays and gene knockout experiments. We also report the crystal structure of NfnB in complex with the essential cofactor flavin mononucleotide, and show that a common amino acid stretch between NfnB and DprE1 is likely to be essential for the interaction with BTZ. We performed docking analysis of NfnB-BTZ in order to understand their interaction and the mechanism of nitroreduction. Although Mycobacterium tuberculosis seems to lack nitroreductases able to inactivate these drugs, our findings are valuable for the design of new BTZ molecules, which may be more effective in vivo

    Estas son algunas de las habilidades blandas demandadas en Colombia

    Get PDF
    Este producto forma parte de una serie de infografías de divulgación científica que buscan reseñar algunas de las investigaciones más importantes en las que ha tenido participación la Universidad EAFIT, publicadas en las revistas especializadas más prestigiosas del mund

    Side Chain-Modified Benzothiazinone Derivatives with Anti-Mycobacterial Activity

    Full text link
    Tuberculosis (TB) is a leading infectious disease with serious antibiotic resistance. The benzothiazinone (BTZ) scaffold PBTZ169 kills Mycobacterium tuberculosis (Mtb) through the inhibition of the essential cell wall enzyme decaprenylphosphoryl-β-D-ribose 2’-oxidase (DprE1). PBTZ169 shows anti-TB potential in animal models and pilot clinical tests. Although highly potent, the BTZ type DprE1 inhibitors in general show extremely low aqueous solubility, which adversely affects the drug-like properties. To improve the compounds physicochemical properties, we generated a series of BTZ analogues. Several optimized compounds had MIC values against Mtb lower than 0.01 µM. The representative compound 37 displays improved solubility and bioavailability compared to the lead compound. Additionally, compound 37 shows Mtb-killing ability in an acute infection mouse model

    Benzothiazinones Are Suicide Inhibitors of Mycobacterial Decaprenylphosphoryl-β-d-ribofuranose 2'-Oxidase DprE1.

    Full text link
    Benzothiazinones (BTZs) are antituberculosis drug candidates with nanomolar bactericidal activity against tubercle bacilli. Here we demonstrate that BTZs are suicide substrates of the FAD-dependent decaprenylphosphoryl-β-d-ribofuranose 2'-oxidase DprE1, an enzyme involved in cell-wall biogenesis. BTZs are reduced by DprE1 to an electrophile, which then reacts in a near-quantitative manner with an active-site cysteine of DprE1, thus providing a rationale for the extraordinary potency of BTZs. Mutant DprE1 enzymes from BTZ-resistant strains reduce BTZs to inert metabolites while avoiding covalent inactivation. Our results explain the basis for drug sensitivity and resistance to an exceptionally potent class of antituberculosis agents
    corecore