241 research outputs found

    Initial Results from the Nobeyama Molecular Gas Observations of Distant Bright Galaxies

    Full text link
    We present initial results from the CO survey toward high redshift galaxies using the Nobeyama 45m telescope. Using the new wide bandwidth spectrometer equipped with a two-beam SIS receiver, we have robust new detections of three high redshift (z=1.6-3.4) submillimeter galaxies (SXDF 1100.001, SDP9, and SDP17), one tentative detection (SDSS J160705+533558), and one non-detection (COSMOS-AzTEC1). The galaxies observed during the commissioning phase are sources with known spectroscopic redshifts from previous optical or from wide-band submm spectroscopy. The derived molecular gas mass and line widths from Gaussian fits are ~10^11 Msun and 430-530 km/s, which are consistent with previous CO observations of distant submm galaxies and quasars. The spectrometer that allows a maximum of 32 GHz instantaneous bandwidth will provide new science capabilities at the Nobeyama 45m telescope, allowing us to determine redshifts of bright submm selected galaxies without any prior redshift information.Comment: 4 pages, 1 figure, PASJ Letter Accepte

    Dual-FRET imaging of IP3 and Ca2+ revealed Ca2+-induced IP3 production maintains long lasting Ca2+ oscillations in fertilized mouse eggs

    Get PDF
    In most species, fertilization induces Ca(2+) transients in the egg. In mammals, the Ca(2+) rises are triggered by phospholipase Czeta (PLCzeta) released from the sperm; IP3 generated by PLCzeta induces Ca(2+) release from the intracellular Ca(2+) store through IP3 receptor, termed IP3-induced Ca(2+) release. Here, we developed new fluorescent IP3 sensors (IRIS-2s) with the wider dynamic range and higher sensitivity (Kd = 0.047-1.7 muM) than that we developed previously. IRIS-2s employed green fluorescent protein and Halo-protein conjugated with the tetramethylrhodamine ligand as fluorescence resonance energy transfer (FRET) donor and acceptor, respectively. For simultaneous imaging of Ca(2+) and IP3, using IRIS-2s as the IP3 sensor, we developed a new single fluorophore Ca(2+) sensor protein, DYC3.60. With IRIS-2s and DYC3.60, we found that, right after fertilization, IP3 concentration ([IP3]) starts to increase before the onset of the first Ca(2+) wave. [IP3] stayed at the elevated level with small peaks followed after Ca(2+) spikes through Ca(2+) oscillations. We detected delays in the peak of [IP3] compared to the peak of each Ca(2+) spike, suggesting that Ca(2+)-induced regenerative IP3 production through PLC produces small [IP3] rises to maintain [IP3] over the basal level, which results in long lasting Ca(2+) oscillations in fertilized eggs
    corecore