7 research outputs found

    Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid Ammonia

    Get PDF
    U radu je prikazana primjena niskotemperaturne selektivne katalitičke redukcije dušikovih oksida u otpadnom plinu od proizvodnje dušične kiseline. Selektivna katalitička redukcija provodi se heterogenim katalizatorom TiO2/WO3 nanesenim na nosač od Al2O3 velike aktivne površine po obujmu, oblika pčelinjeg saća. Prikazana je učinkovitost selektivne katalitičke redukcije u temperaturnom području otpadnog plina od 180 do 230 °C uz izravnu primjenu tekućeg amonijaka, bez prethodnog isparavanja u plinovito stanje. Posebnom izvedbom sustava za izravno doziranje tekućeg amonijaka te omogućavanjem učinkovite homogenizacije s otpadnim plinom postignute su emisije dušikovih oksida od 100,0 do 185,0 mg m-3 izrađenih kao NO2 u otpadnom plinu. Pokazano je da niskotemperaturna selektivna katalitička redukcija uz izravnu primjenu tekućeg amonijaka otvara novu mogućnost za smanjenje emisije dušikovih oksida u proizvodnji dušične kiseline. Istodobno se izbjegava svaka mogućnost pojave dušikovih oksida nakon heterogenog katalizatora u procesu naknadnog iskorištenja energije otpadnog plina u plinskoj turbini. Izravnom primjenom tekućeg amonijaka omogućen je jednostavniji sustav selektivne katalitičke redukcije dušikovih oksida u otpadnom plinu, bez dodatne operacije isparavanja i predgrijavanja te se ostvaruje ekonomski i energetski učinkovitije smanjenje emisije dušikovih oksida uz poštovanje zakonskih odredbi o graničnim emisijama.This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2 of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of tail gas through a gas turbine. With the direct application of liquid ammonia it is possible to create the simpler system of selective catalytic reduction of tail-gas nitrous oxides, thus avoiding the additional processes of vaporization and preheating, and thereby achieving an economic and energetic-efficient procedure for their reduction down to legally prescribed limits

    Sponge non-metastatic Group I Nme gene/protein - structure and function is conserved from sponges to humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleoside diphosphate kinases NDPK are evolutionarily conserved enzymes present in Bacteria, Archaea and Eukarya, with human Nme1 the most studied representative of the family and the first identified metastasis suppressor. Sponges (Porifera) are simple metazoans without tissues, closest to the common ancestor of all animals. They changed little during evolution and probably provide the best insight into the metazoan ancestor's genomic features. Recent studies show that sponges have a wide repertoire of genes many of which are involved in diseases in more complex metazoans. The original function of those genes and the way it has evolved in the animal lineage is largely unknown. Here we report new results on the metastasis suppressor gene/protein homolog from the marine sponge <it>Suberites domuncula</it>, NmeGp1Sd. The purpose of this study was to investigate the properties of the sponge Group I Nme gene and protein, and compare it to its human homolog in order to elucidate the evolution of the structure and function of Nme.</p> <p>Results</p> <p>We found that sponge genes coding for Group I Nme protein are intron-rich. Furthermore, we discovered that the sponge NmeGp1Sd protein has a similar level of kinase activity as its human homolog Nme1, does not cleave negatively supercoiled DNA and shows nonspecific DNA-binding activity. The sponge NmeGp1Sd forms a hexamer, like human Nme1, and all other eukaryotic Nme proteins. NmeGp1Sd interacts with human Nme1 in human cells and exhibits the same subcellular localization. Stable clones expressing sponge NmeGp1Sd inhibited the migratory potential of CAL 27 cells, as already reported for human Nme1, which suggests that Nme's function in migratory processes was engaged long before the composition of true tissues.</p> <p>Conclusions</p> <p>This study suggests that the ancestor of all animals possessed a NmeGp1 protein with properties and functions similar to evolutionarily recent versions of the protein, even before the appearance of true tissues and the origin of tumors and metastasis.</p

    MacroD1 Is a Promiscuous ADP-Ribosyl Hydrolase Localized to Mitochondria

    No full text
    MacroD1 is a macrodomain containing protein that has mono-ADP-ribose hydrolase enzymatic activity toward several ADP-ribose adducts. Dysregulation of MacroD1 expression has been shown to be associated with the pathogenesis of several forms of cancer. To date, the physiological functions and sub-cellular localization of MacroD1 are unclear. Previous studies have described nuclear and cytosolic functions of MacroD1. However, in this study we show that endogenous MacroD1 protein is highly enriched within mitochondria. We also show that MacroD1 is highly expressed in human and mouse skeletal muscle. Furthermore, we show that MacroD1 can efficiently remove ADP-ribose from 5' and 3'-phosphorylated double stranded DNA adducts in vitro. Overall, we have shown that MacroD1 is a mitochondrial protein with promiscuous enzymatic activity that can target the ester bonds of ADP-ribosylated phosphorylated double-stranded DNA ends. These findings have exciting implications for MacroD1 and ADP-ribosylation within the regulation of mitochondrial function and DNA-damage in vivo

    Specificity of reversible ADP-ribosylation and regulation of cellular processes

    No full text
    Proper and timely regulation of cellular processes is fundamental to the overall health and viability of organisms across all kingdoms of life. Thus, organisms have evolved multiple highly dynamic and complex biochemical signaling cascades in order to adapt and survive diverse challenges. One such method of conferring rapid adaptation is the addition or removal of reversible modifications of different chemical groups onto macromolecules which in turn induce the appropriate downstream outcome. ADP-ribosylation, the addition of ADP-ribose (ADPr) groups, represents one of these highly conserved signaling chemicals. Herein we outline the writers, erasers and readers of ADP-ribosylation and dip into the multitude of cellular processes they have been implicated in. We also review what we currently know on how specificity of activity is ensured for this important modification

    Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    No full text
    This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO<sub>2</sub>/WO<sub>3</sub> heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h<sup>-1</sup> and average inlet mass concentration of the nitrous oxides expressed as NO<sub>2</sub>of 800,0 mgm<sup>-3</sup> during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO<sub>2</sub> in tail gas ranging from 100,0 to 185,0 mg m<sup>-3</sup>. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of tail gas through a gas turbine. With the direct application of liquid ammonia it is possible to create the simpler system of selective catalytic reduction of tail-gas nitrous oxides, thus avoiding the additional processes of vaporization and preheating, and thereby achieving an economic and energetic-efficient procedure for their reduction down to legally prescribed limits

    MacroD1 is a promiscuous ADP-ribosyl hydrolase localized to mitochondria

    No full text
    MacroD1 is a macrodomain containing protein that has mono-ADP-ribose hydrolase enzymatic activity toward several ADP-ribose adducts. Dysregulation of MacroD1 expression has been shown to be associated with the pathogenesis of several forms of cancer. To date, the physiological functions and sub-cellular localization of MacroD1 are unclear. Previous studies have described nuclear and cytosolic functions of MacroD1. However, in this study we show that endogenous MacroD1 protein is highly enriched within mitochondria. We also show that MacroD1 is highly expressed in human and mouse skeletal muscle. Furthermore, we show that MacroD1 can efficiently remove ADP-ribose from 5' and 3'-phosphorylated double stranded DNA adducts in vitro. Overall, we have shown that MacroD1 is a mitochondrial protein with promiscuous enzymatic activity that can target the ester bonds of ADP-ribosylated phosphorylated double-stranded DNA ends. These findings have exciting implications for MacroD1 and ADP-ribosylation within the regulation of mitochondrial function and DNA-damage in vivo

    DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates

    No full text
    Ubiquitylation had been considered limited to protein lysine residues, but other substrates have recently emerged. Here, we show that DELTEX E3 ligases specifically target the 3' hydroxyl of the adenosine diphosphate (ADP)-ribosyl moiety that can be linked to a protein, thus generating a hybrid ADP-ribosyl-ubiquitin modification. Unlike other known hydroxyl-specific E3s, which proceed via a covalent E3~ubiqutin intermediate, DELTEX enzymes are RING E3s that stimulate a direct ubiquitin transfer from E2~ubiquitin onto a substrate. However, DELTEXes follow a previously unidentified paradigm for RING E3s, whereby the ligase not only forms a scaffold but also provides catalytic residues to activate the acceptor. Comparative analysis of known hydroxyl-ubiquitylating active sites points to the recurring use of a catalytic histidine residue, which, in DELTEX E3s, is potentiated by a glutamate in a catalytic triad-like manner. In addition, we determined the hydrolase specificity profile of this modification, identifying human and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enzymes that could reverse it in cells
    corecore