52 research outputs found
Observation of Toroidal Flow on LHD
In order to investigate the formation of toroidal flow in helical systems, both NBI driven flow and spontaneous toroidal flow were observed in Large Helical Device (LHD). The toroidal flow driven by NBI is dominant in plasma core while its contribution is small near plasma edge. The spontaneous toroidal flow changes its direction from co to counter when the radial electric field is changed from negative to positive at plasma edge. The direction of the spontaneous toroidal flow due to the radial electric field near plasma edge is observed to be opposite to that in plasma core where the helical ripple is small
Measurements of radial profile of isotope density ratio using bulk charge exchange spectroscopy
A bulk charge exchange spectroscopy (BCXS) system using a grism (grating prism) spectrometer has been applied to measure the profile of the deuterium (D) fraction in deuterium and hydrogen (H) mixture plasma in the Large Helical Device. The observed spectrum can be fitted with four Gaussian functions successfully by reduction of free parameters for the least-squares fit. The plasma flow velocity and ion temperature profile measured by charge exchange spectroscopy using carbon impurity are used for estimation of the wavelength shift of hot components to reduce the free parameter. The ion temperature is used to estimate the apparent wavelength shift due to the energy dependent emission cross section only and is not used to set the Doppler width for H and D in the fitting. The sensitivity of the evaluated D fraction on the velocity is increased for a higher D fraction. The error of the D fraction is calculated from the error in the fitted parameter and sensitivity on the velocity of the hot component. The difference in the profile and time trace of the D fraction with D pellet and H pellet injection was observed clearly by BCXS using a grism spectrometer
Direct observation of mass-dependent collisionless energy transfer via Landau and transit-time damping
The energy transfer from wave to particle occurs in collisionless plasma through the interaction between particle and wave, associated with the deformation of ion velocity space from Maxwell-Boltzmann distribution. Here we show the direct observation of mass-dependent collisionless energy transfer via Landau and transit-time damping in a laboratory plasma. The Landau and transit-time damping are confirmed by the bipolar velocity-space signature of the ion velocity distribution function, measured by fast charge exchange spectroscopy with a time resolution less than ion-ion collision time. The excellent agreement between the resonant phase velocity evaluated from the bipolar velocity-space signature and the wave’s phase velocity, estimated from the frequency of the magnetohydrodynamics oscillation measured with the plasma displacement is clear evidence for the Landau damping. The energy transfer from solitary wave to fully ionized carbon impurity ions is larger than that of bulk ions 2-3 times due to heavier mass
A new multi-tracer pellet injection for a simultaneous study of low- and mid/high-Z impurities in high-temperature plasmas
A new multi-tracer technique in the Tracer-Encapsulated Solid Pellet (TESPEL) method has been developed in order to acquire simultaneously the information about the behaviors of various impurities, i.e., to study concurrently the behaviors of low- and mid/high-Z impurities in magnetically confined high-temperature plasmas. In this new technique, an inorganic compound (for example, lithium titanate, Li2TiO3) is proposed to be used as a tracer embedded in the core of the TESPEL, instead of pure elements. The results of the proof-of-principle experiment clearly demonstrate the applicability of the new multi-tracer technique in the TESPEL method for the simultaneous study of behaviors of low- and mid/high-Z impurities in high-temperature plasmas
Effects of core stochastization on particle and momentum transport
The effects of the stochastic magnetic field in a plasma center produced by electron cyclotron current drive (ECCD) on transport have been revealed. Because the electron temperature profile is flat in the core region, in the case of counter-directed ECCD (ctr-ECCD) against the toroidal magnetic field, the magnetic field is stochastic in the core region with rotational transform ᵼ ∼ 1/3. The particle diffusion coefficient of the ctr-ECCD plasma is approximately 20 times as large as that of the plasma without the stochastic magnetic field produced by co-directed ECCD (co-ECCD) at the maximum. Furthermore, in the stochastic magnetic field with ctr-ECCD, counter-directed intrinsic rotation is observed in the plasma with balanced NBI discharge
Effects of Resonant Magnetic Perturbation on Particle Transport in LHD
In this study, the effects of resonant magnetic perturbation (RMP) on particle transport are investigated in Large Helical device (LHD). The magnetic configuration is selected to be the outwardly shifted configuration, for which the magnetic axis position (Rax) is 3.9 m. At Rax = 3.9 m, the main plasma is surrounded by a thick ergodic layer, with width of about 30% of the plasma minor radius. The perturbation mode m/n = 1/1, where m and n are poloidal and toroidal mode numbers, is applied. The resonant layer is around the last closed flux surface. With RMP, a region in which both the connection and Kolmogorov lengths are finite and the magnetic field is ergodic forms; this region extends inside the main plasma. In the low-collisionality regime, where νh* 1), a clear difference in particle transport is found. A clear difference in turbulence is also observed, suggesting that turbulence plays a significant role in particle transport in the high-collisionality regime both with and without RMP
Observation of a reduced-turbulence regime with boron powder injection in a stellarator
In state-of-the-art stellarators, turbulence is a major cause of the degradation of plasma confinement. To maximize confinement, which eventually determines the amount of nuclear fusion reactions, turbulent transport needs to be reduced. Here we report the observation of a confinement regime in a stellarator plasma that is characterized by increased confinement and reduced turbulent fluctuations. The transition to this regime is driven by the injection of submillimetric boron powder grains into the plasma. With the line-averaged electron density being kept constant, we observe a substantial increase of stored energy and electron and ion temperatures. At the same time, the amplitude of the plasma turbulent fluctuations is halved. While lower frequency fluctuations are damped, higher frequency modes in the range between 100 and 200 kHz are excited. We have observed this regime for different heating schemes, namely with both electron and ion cyclotron resonant radio frequencies and neutral beams, for both directions of the magnetic field and both hydrogen and deuterium plasmas
Ion temperature clamping in Wendelstein 7-X electron cyclotron heated plasmas
The neoclassical transport optimization of the Wendelstein 7-X stellarator has not resulted in the predicted high energy confinement of gas fueled electron-cyclotron-resonance-heated (ECRH) plasmas as modelled in (Turkin et al 2011 Phys. Plasmas 18 022505) due to high levels of turbulent heat transport observed in the experiments. The electron-turbulent-heat transport appears non-stiff and is of the electron temperature gradient (ETG)/ion temperature gradient (ITG) type (Weir et al 2021 Nucl. Fusion 61 056001). As a result, the electron temperature Te can be varied freely from 1 keV–10 keV within the range of PECRH = 1–7 MW, with electron density ne values from 0.1–1.5 × 1020 m−3. By contrast, in combination with the broad electron-to-ion energy-exchange heating profile in ECRH plasmas, ion-turbulent-heat transport leads to clamping of the central ion temperature at Ti ∼ 1.5 keV ± 0.2 keV. In a dedicated ECRH power scan at a constant density of 〈ne〉 = 7 × 1019 m−3, an apparent \u27negative ion temperature profile stiffness\u27 was found in the central plasma for (r/a < 0.5), in which the normalized gradient ∇Ti/Ti decreases with increasing ion heat flux. The experiment was conducted in helium, which has a higher radiative density limit compared to hydrogen, allowing a broader power scan. This \u27negative stiffness\u27 is due to a strong exacerbation of turbulent transport with an increasing ratio of Te/Ti in this electron-heated plasma. This finding is consistent with electrostatic microinstabilities, such as ITG-driven turbulence. Theoretical calculations made by both linear and nonlinear gyro-kinetic simulations performed by the GENE code in the W7-X three-dimensional geometry show a strong enhancement of turbulence with an increasing ratio of Te/Ti. The exacerbation of turbulence with increasing Te/Ti is also found in tokamaks and inherently enhances ion heat transport in electron-heated plasmas. This finding strongly affects the prospects of future high-performance gas-fueled ECRH scenarios in W7-X and imposes a requirement for turbulence-suppression techniques
Impact of Magnetic Field Configuration on Heat Transport in Stellarators and Heliotrons
We assess the magnetic field configuration in modern fusion devices by comparing experiments with the same heating power, between a stellarator and a heliotron. The key role of turbulence is evident in the optimized stellarator, while neoclassical processes largely determine the transport in the heliotron device. Gyrokinetic simulations elucidate the underlying mechanisms promoting stronger ion scale turbulence in the stellarator. Similar plasma performances in these experiments suggests that neoclassical and turbulent transport should both be optimized in next step reactor designs
- …