42 research outputs found

    Relative fat oxidation is higher in children than adults

    Get PDF
    Background: Prepubescent children may oxidize fatty acids more readily than adults. Therefore, dietary fat needs would be higher for children compared with adults. The dietary fat recommendations are higher for children 4 to 18 yrs (i.e., 25 to 35% of energy) compared with adults (i.e., 20 to 35% of energy). Despite this, many parents and children restrict dietary fat for health reasons. Methods: This study assessed whether rates of fat oxidation are similar between prepubescent children and adults. Ten children (8.7 ± 1.4 yr, 33 ± 13 kg mean ± SD) in Tanner stage 1 and 10 adults (41.6 ± 8 yr, 74 ± 13 kg) were fed a weight maintenance diet for three days to maintain body weight and to establish a consistent background for metabolic rate measurements (all foods provided). Metabolic rate was measured on three separate occasions before and immediately after breakfast and for 9 hrs using a hood system (twice) or a room calorimeter (once) where continuous metabolic measurements were taken. Results: During all three sessions whole body fat oxidation was higher in children (lower RQ) compared to adults (mean RQ= 0.84 ± .016 for children and 0.87 ± .02, for adults, p < 0.02). Although, total grams of fat oxidized was similar in children (62.7 ± 20 g/24 hrs) compared to adults (51.4 ± 19 g/24 hrs), the grams of fat oxidized relative to calorie expenditure was higher in children (0.047 ± .01 g/kcal, compared to adults (0.032 ± .01 p < 0.02). Females oxidized more fat relative to calorie expenditure than males of a similar age. A two way ANOVA showed no interaction between gender and age in terms of fax oxidation. Conclusion: These data suggest that fat oxidation relative to total calorie expenditure is higher in prepubescent children than in adults. Consistent with current dietary guidelines, a moderate fat diet is appropriate for children within the context of a diet that meets their energy and nutrient needs. Originally published Nutrition Journal, Vol. 6, No. 19, Aug 200

    The Metabolic Syndrome and the immediate antihypertensive effects of aerobic exercise: a randomized control design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The metabolic syndrome (Msyn) affects about 40% of those with hypertension. The Msyn and hypertension have a common pathophysiology. Exercise is recommended for their treatment, prevention and control. The influence of the Msyn on the antihypertensive effects of aerobic exercise is not known. We examined the influence of the Msyn on the blood pressure (BP) response following low (LIGHT, 40% peak oxygen consumption, VO<sub>2</sub>peak) and moderate (MODERATE, 60% VO<sub>2</sub>peak) intensity, aerobic exercise.</p> <p>Methods</p> <p>Subjects were 46 men (44.3 ± 1.3 yr) with pre- to Stage 1 hypertension (145.5 ± 1.6/86.3 ± 1.2 mmHg) and borderline dyslipidemia. Men with Msyn (n = 18) had higher fasting insulin, triglycerides and homeostasis model assessment (HOMA) and lower high density lipoprotein than men without Msyn (n = 28) (p < 0.01). Subjects consumed a standard meal and 2 hr later completed one of three randomized experiments separated by 48 hr. The experiments were a non-exercise control session of seated rest and two cycle bouts (LIGHT and MODERATE). BP, insulin and glucose were measured before, during and after the 40 min experiments. Subjects left the laboratory wearing an ambulatory BP monitor for the remainder of the day. Repeated measure ANCOVA tested if BP, insulin and glucose differed over time among experiments in men without and with the Msyn with HOMA as a covariate. Multivariable regression analyses examined associations among BP, insulin, glucose and the Msyn.</p> <p>Results</p> <p>Systolic BP (SBP) was reduced 8 mmHg (p < 0.05) and diastolic BP (DBP) 5 mmHg (p = 0.052) after LIGHT compared to non-exercise control over 9 hr among men without versus with Msyn. BP was not different after MODERATE versus non-exercise control between Msyn groups (p ≥ 0.05). The factors accounting for 17% of the SBP response after LIGHT were baseline SBP (β = -0.351, r<sup>2 </sup>= 0.123, p = 0.020), Msyn (β = 0.277, r<sup>2 </sup>= 0.077, p = 0.069), and HOMA (β = -0.124, r<sup>2 </sup>= 0.015, p = 0.424). Msyn (r<sup>2 </sup>= 0.096, p = 0.036) was the only significant correlate of the DBP response after LIGHT.</p> <p>Conclusion</p> <p>Men without the Msyn respond more favorably to the antihypertensive effects of lower intensity, aerobic exercise than men with the Msyn. If future work confirms our findings, important new knowledge will be gained for the personalization of exercise prescriptions among those with hypertension and the Msyn.</p

    EFFECT OF LIVER DENERVATION ON GLUCOSE-PRODUCTION DURING RUNNING IN GUINEA-PIGS

    No full text
    Activity in sympathetic liver nerves has been proposed to be important for glucose production in exercising humans. However, liver denervation does not influence the exercise-induced increase in glucose production in the rat and dog. These species have a poor sympathetic liver innervation in contrast to the rich innervation in humans. The effect of liver denervation on glucose production during exercise was therefore studied in the guinea pig, a species with a rich sympathetic hepatic innervation comparable to that of humans. Guinea pigs were selectively liver denervated (n = 9) or sham operated (n = 8) and instrumented with a carotid and a jugular catheter. One week later they ran on a treadmill at 32 m/min for 20 min. Glucose turnover was evaluated by a primed constant-rate intravenous infusion of [3-H-3]glucose. Arterial blood was sampled for analysis of hormones and metabolites. At rest, liver-denervated guinea pigs had lower glucose turnover and plasma concentrations of glucose, glycerol, and cortisol than control animals. During running, the increase in hepatic glucose production was similar in the two groups (4.1 +/- 0.8 vs. 3.8 +/- 0.7 mu mol.min(-1).100 g(-1) in control animals) and so were hepatic (247 +/- 25 vs. 246 +/- 45 mmol glucose units/kg wet wt in control animals) and muscle glycogen concentrations at the end of exercise. Exercise-induced increases were also similar in the two groups for epinephrine (1.9 +/- 0.3 vs. 1.6 +/- 0.2 nM in control animals), norepinephrine (13.0 +/- 1.9 vs. 11.1 +/- 2.3 nM in control animals), cortisol [0.41 +/- 0.03 vs. 0.57 +/- 0.08 mu M in control animals (P = 0.09)], and glycerol [47 +/- 7 vs. 70 +/- 12 mu M in control animals (P = 0.103)]. In conclusion, sympathetic liver nerve activity is not a prerequisite for the exercise-induced increase in glucose production in the guinea pig
    corecore