7 research outputs found

    Crosstalk Reduction Using a Dual Energy Window Scatter Correction in Compton Imaging

    No full text
    Compton cameras can simultaneously detect multi-isotopes; however, when simultaneous imaging is performed, crosstalk artifacts appear on the images obtained using a low-energy window. In conventional single-photon emission computed tomography, a dual energy window (DEW) subtraction method is used to reduce crosstalk. This study aimed to evaluate the effectiveness of employing the DEW technique to reduce crosstalk artifacts in Compton images obtained using low-energy windows. To this end, in this study, we compared reconstructed images obtained using either a photo-peak window or a scatter window by performing image subtraction based on the differences between the two images. Simulation calculations were performed to obtain the list data for the Compton camera using a 171 keV and a 511 keV point source. In the images reconstructed using these data, crosstalk artifacts were clearly observed in the images obtained using a 171 keV photo-peak energy window. In the images obtained using a scatter window (176–186 keV), only crosstalk artifacts were visible. The DEW method could eliminate the influence of high-energy sources on the images obtained with a photo-peak window, thereby improving quantitative capability. This was also observed when the DEW method was used on experimentally obtained images

    Imaging of 99mTc-DMSA and 18F-FDG in Humans Using a Si/CdTe Compton Camera

    No full text
    The Compton camera can simultaneously acquire images of multiple isotopes injected in a body; therefore, it has the potential to introduce a new subfield in the field of biomedical imaging applications. The objective of this study is to assess the ability of a prototype semiconductor-based silicon/cadmium telluride (Si/CdTe) Compton camera to simultaneously image the distributions of technetium (99mTc)-dimercaptosuccinic acid (DMSA) (141 keV emission) and 18F-fluorodeoxyglucose (FDG) (511 keV emission) injected into a human volunteer. 99mTc-DMSA and 18F-FDG were injected intravenously into a 25-year-old male volunteer. The distributions of 99mTc-DMSA and 18F-FDG were simultaneously made visible by setting a specified energy window for each radioisotope. The images of these radiopharmaceuticals acquired using the prototype Compton camera were superimposed onto computed tomography images for reference. The reconstructed image showed that 99mTc-DMSA had accumulated in both kidneys, which is consistent with the well-known diagnostic distribution determined by clinical imaging via single-photon emission computed tomography. In the 18F-FDG image, there is broad distribution around the liver and kidneys, which was expected based on routine clinical positron emission tomography imaging. The current study demonstrated for the first time that the Si/CdTe Compton camera was capable of simultaneously imaging the distributions of two radiopharmaceuticals, 99mTc-DMSA and 18F-FDG, in a human body. These results suggest that the Si/CdTe Compton camera has the potential to become a novel modality for nuclear medical diagnoses enabling multi-probe simultaneous tracking

    In vivo simultaneous imaging with 99mTc and 18F using a Compton camera

    No full text
    We have been developing a medical imaging technique using a Compton camera. This study evaluates the feasibility of clear imaging with 99mTc and 18F simultaneously, and demonstrates in vivo imaging with 99mTc and/or 18F. We used a Compton camera with silicon and cadmium telluride (Si/CdTe) semiconductors. We estimated the imaging performance of the Compton camera for 141 keV and 511 keV gamma rays from 99mTc and 22Na, respectively. Next, we simultaneously imaged 99mTc and 18F point sources to evaluate the cross-talk artifacts produced by a higher energy gamma-ray background. Then, in the in vivo experiments, three rats were injected with 99mTc-dimercaptosuccinic acid and/or 18F-fluorodeoxyglucose and imaged. The Compton images were compared with PET images. The rats were euthanized, and the activities in their organs were measured using a well counter. The energy resolution and spatial resolution were measured for the sources. No apparent cross-talk artifacts were observed in the practical-activity ratio (99mTc:18F = 1:16). We succeeded in imaging the distributions of 99mTc and 18F simultaneously, and the results were consistent with the PET images and well counter measurements. Our Si/CdTe Compton camera can thus work as a multi-tracer imager, covering various SPECT and PET probes, with less cross-talk artifacts in comparison to the conventional Anger cameras using a collimator. Our findings suggest the possibility of human trials

    Effect of number of views on cross-sectional Compton imaging: A fundamental study with backprojection

    No full text
    Introduction: We have been developing a medical imaging technique using a Compton camera, which is expected to reconstruct three-dimensional images. If the number of views is not sufficient, star-shaped artifacts (streak artifacts) could arise in cross-sectional images. Therefore, we estimated the point spread function (PSF) of cross-sectional Compton images and the effect of the number of views by Monte Carlo simulations and experimental studies. Materials and Methods: A cross-sectional Compton image was reconstructed using a dataset comprising 719 view directions and PSF was analyzed using a radial distribution. The peak height, full width at half maximum (FWHM), background (BG), and residual sum of squares (RSS) were calculated from the obtained PSF. In addition, RSSs were plotted against the number of views to estimate the required number to suppress star-shaped artifacts. Results: There was no correlation found between the number of views and both FWHM (16 mm) and peak/BG ratio (~1×10^4). RSSs were reduced with the number of views and approached the minimum asymptotically. Correlation was observed between the required number of views and the number of Compton events used for image reconstruction.Conclusion: We determined the PSF of cross-sectional Compton images and the effect of the number of views on the images. The required number of views to suppress the star-shaped artifact is related to the square root of the number of Compton events used to reconstruct the image. From this study, we concluded that 21 or more views are required for clinical purposes
    corecore