26 research outputs found

    Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions

    Get PDF
    Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language—the site of such integration seems to be the parietal and extending opercular cortices

    3D-PTV Measuring onBubble and Liquid Velocities of a Single Bubble Jet

    No full text

    Performance of Outer-Loop Control for Adaptive Modulation and Coding Based on Mutual Information in OFDM MIMO SDM

    No full text

    Neural evidence of mirror self-recognition in the secondary somatosensory cortex of macaque: Observations from a single-cell recording experiment and implications for consciousness

    No full text
    Despite mirror self-recognition being regarded as a classical indication of self-awareness, little is known about its neural underpinnings. An increasing body of evidence pointing to a role of multimodal somatosensory neurons in self-recognition guided our investigation toward the secondary somatosensory cortex (SII), as we observed single-neuron activity from a macaque monkey sitting in front of a mirror. The monkey was previously habituated to the mirror, successfully acquiring the ability of mirror self-recognition. While the monkey underwent visual and somatosensory stimulation, multimodal visual and somatosensory activity was detected in the SII, with neurons found to respond to stimuli seen through the mirror. Responses were also modulated by self-related or non-self-related stimuli. These observations corroborate that vision is an important aspect of SII activity, with electrophysiological evidence of mirror self-recognition at the neuronal level, even when such an ability is not innate. We also show that the SII may be involved in distinguishing self and non-self. Together, these results point to the involvement of the SII in the establishment of bodily self-consciousness.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore