776 research outputs found
The Relationship between Reactive Oxygen Species and Cardiac Fibrosis in the Dahl Salt-Sensitive Rat under ACEI Administration
Enalapril maleate, the oldest and most widely distributed ACEI, and alacepril, the newest and antioxidant ACEI, were compared in the point of cardioprotective effect for Dahl salt-sensitive rat. In order to evaluate the correlation between the three factors, cardiac fibrosis and blood pressure/oxidative-stress marker (tissue TBARS), index of correlation was calculated. The results showed a significant difference in cardiac fibrosis between high-dose alacepril (30 mg/kg/day, group H) and enalapril maleate (10 mg/kg/day, group E). There was significant correlation between cardiac fibrosis and oxidative-stress marker, although there was no correlation between cardiac fibrosis and blood pressure. Fibrosis was more influenced by oxidative stress not by blood pressure, we should not select ACEI only by blood pressure-lowering effect and should more consider cardioprotective effects of ACEI
A novel lysophosphatidic acid acyltransferase enzyme (LPAAT4) with a possible role for incorporating docosahexaenoic acid into brain glycerophospholipids
AbstractGlycerophospholipids are important components of cellular membranes, required for constructing structural barriers, and for providing precursors of bioactive lipid mediators. Lysophosphatidic acid acyltransferases (LPAATs) are enzymes known to function in the de novo glycerophospholipid biosynthetic pathway (Kennedy pathway), using lysophosphatidic acid (LPA) and acyl-CoA to form phosphatidic acid (PA). Until now, three LPAATs (LPAAT1, 2, and 3) have been reported from the 1-acyl-glycerol-3-phosphate O-acyltransferase (AGPAT) family. In this study, we identified a fourth LPAAT enzyme, LPAAT4, previously known as an uncharacterized enzyme AGPAT4 (LPAATδ), from the AGPAT family. Although LPAAT4 was known to contain AGPAT motifs essential for acyltransferase activities, detailed biochemical properties were unknown. Here, we found that mouse LPAAT4 (mLPAAT4) possesses LPAAT activity with high acyl-CoA specificity for polyunsaturated fatty acyl-CoA, especially docosahexaenoyl-CoA (22:6-CoA, DHA-CoA). mLPAAT4 was distributed in many tissues, with relatively high expression in the brain, rich in docosahexaenoic acid (DHA, 22:6). mLPAAT4 siRNA in a neuronal cell line, Neuro 2A, caused a decrease in LPAAT activity with 22:6-CoA, suggesting that mLPAAT4 functions endogenously. siRNA in Neuro 2A cells caused a decrease in 18:0–22:6 PC, whereas mLPAAT4 overexpression in Chinese hamster ovary (CHO)-K1 cells caused an increase in this species. Although DHA is considered to have many important functions for the brain, the mechanism of its incorporation into glycerophospholipids is unknown. LPAAT4 might have a significant role for maintaining DHA in neural membranes. Identification of LPAAT4 will possibly contribute to understanding the regulation and the biological roles of DHA-containing glycerophospholipids in the brain
頭蓋顔面形成におけるDlx5の役割
学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 饗場 篤, 東京大学特任教授 児玉 龍彦, 東京大学特任教授 渡邉 すみ子, 東京大学准教授 新井 郷子, 東京大学准教授 鯉沼 代造University of Tokyo(東京大学
Detection-dependent six-photon NOON state interference
NOON state interference (NOON-SI) is a powerful tool to improve the phase
sensing precision, and can play an important role in quantum sensing and
quantum imaging. However, most of the previous NOON-SI experiments only
investigated the center part of the interference pattern, while the full range
of the NOON-SI pattern has not yet been well explored.In this Letter, we
experimentally and theoretically demonstrate up to six-photon NOON-SI and study
the properties of the interference patterns over the full range.The
multi-photons were generated at a wavelength of 1584 nm from a PPKTP crystal in
a parametric down conversion process.It was found that the shape, the coherence
time and the visibility of the interference patterns were strongly dependent on
the detection schemes.This experiment can be used for applications which are
based on the envelope of the NOON-SI pattern, such as quantum spectroscopy and
quantum metrology.Comment: 5 pages, 3 figure
- …