36 research outputs found

    Magnetic phase diagram and transport properties of FeGe_2

    Full text link
    We have used resistivity measurements to study the magnetic phase diagram of the itinerant antiferromagnet FeGe_2 in the temperature range from 0.3->300 K in magnetic fields up to 16 T. In contrast to theoretical predictions, the incommensurate spin density wave phase is found to be stable at least up to 16 T, with an estimated critical field \mu _0H_c of ~ 30 T. We have also studied the low temperature magnetoresistance in the [100], [110], and [001] directions. The transverse magnetoresistance is well described by a power law for magnetic fields above 1 T with no saturation observed at high fields. We discuss our results in terms of the magnetic structure and the calculated electronic bandstructure of FeGe_2. We have also observed, for the first time in this compound, Shubnikov-de Haas oscillations in the transverse magnetoresistance with a frequency of 190 +- 10 T for a magnetic field along [001].Comment: 13 pages, RevTeX, 7 postscript figures, to appear in Journal of Physics: Condensed Matte

    Long-Lasting Inhibitory Effects of Fetal Liver Mesenchymal Stem Cells on T-Lymphocyte Proliferation

    Get PDF
    Human bone marrow mesenchymal stem cells (BM-MSC) are multipotent progenitor cells that have transient immunomodulatory properties on Natural Killer (NK) cells, Dendritic Cells (DC), and T cells. This study compared the use of MSC isolated from bone marrow and fetal liver (FL-MSC) to determine which displayed the most efficient immunosuppressive effects on T cell activation. Although both types of MSC exhibit similar phenotype profile, FL-MSC displays a much more extended in vitro life-span and immunomodulatory properties. When co-cultured with CD3/CD28-stimulated T cells, both BM-MSC and FL-MSC affected T cell proliferation by inhibiting their entry into the cell cycle, by inducing the down-regulation of phospho-retinoblastoma (pRb), cyclins A and D1, as well as up-regulating p27kip1expression. The T cell inhibition by MSC was not due to the soluble HLA-G5 isoform, but to the surface expression of HLA-G1, as shown by the need of cell-cell contact and by the use of neutralizing anti-HLA-G antibodies. To note, in a HLA-G-mediated fashion, MSC facilitated the expansion of a CD4low/CD8low T subset that had decreased secretion of IFN-γ, and an induced secretion of the immunomodulatory cytokine IL-10. Because of their longer lasting in vitro immunosuppressive properties, mainly mediated by HLA-G, and their more efficient induction of IL-10 production and T cell apoptosis, fetal liver MSC could be considered a new tool for MSC therapy to prevent allograft rejection

    Algorithms for calculating new parameters of network graphs

    No full text

    Breaking effect of an explosion during preparation of facing stone blocks

    No full text

    The mechanism of radioresistant DNA synthesis in ataxia-telangiectasia

    No full text
    Using DNA fiber autoradiography, DNA replication in cells of healthy donors and in those of patients with ataxia telangiectasia (AT) was estimated. A new fact has been demonstrated showing a decreased number of simultaneously operating in tandem groups of replicon clusters in AT cells compared to that in normal cells. The data obtained suggest a reduced frequency of activation in the adjacent replicon clusters in AT cells. It should be noted that the rate of fork movement remained unchanged in AT cells. Besides, the frequency of replication in adjacent replicon clusters remained unaltered after 5 Gy irradiation in AT cells, while the normal cells were radiosensitive to reduction in this replication parameter to the low level seen in both non-irradiated and 5 Gy irradiated AT cells. The relation of the above data to radioresistant DNA synthesis is discussed

    The interrelation between changes in the structural organization of replicon clusters, a retarded fork displacement rate and the high level of spontaneous SCEs in form II of xeroderma pigmentosum.

    No full text
    A cytogenetic observation, that the sister chromatid exchanges (SCE) occur 3 times more frequently in a special form of xeroderma pigmentosum--XPII than in the norm, prompted a study of DNA replication in this rare disease. Using DNA fiber autoradiography, the rate of fork movement and the frequency of initiation in the adjacent clusters of replicons were estimated. The rate of fork movement was significantly slower than that in classical XP and in normal cells. Here evidence was provided on another defect in DNA replication in XPII that involves a significantly decreased number of simultaneously operating adjacent clusters of replicons, which results in a decreased rate of DNA chain-growth. According to the Painter replication model for SCE, the exchanges arise due to double-strand DNA breaks occurring on the border between two adjacent clusters, respectively, completely and partially replicated. A retarded fork-displacement rate together with a decreased rate of DNA-chain growth may cause this situation to persist longer than in the norm. Thus, our data provide a further support of the replication model for SCE. A similar combination of cytogenetic and molecular defects has been obtained earlier in the Bloom syndrome cells
    corecore