331 research outputs found

    Russian energy projects in South Africa

    Get PDF
    From early 2019, South Africa and Russia have planned to increase their energy trade. Russia can become one of the world’s five largest energy exporters. This study examines of the cost of a kilowatt of electricity generated by coal power projects in South Africa and compares nuclear electricity with other types of green energy. This method must help to improve the management decision-making process in South Africa for energy exporta. Reasons for this persistence include the marketing strategies of Russian companies for seeking new markets in industrialised and postindustrial countries where, due to intensive competition, sales of Russian high-tech products are often unsuccessful. Renewable energy gives a chance to potentially reduce poverty in South Africa. The study concludes that imported crude oil is more suited to the needs of the refining industry of South Africa. The consumption for this type of energy in areas not concerning industry is insignificant and its increase is unlikely to be observed in the future. Highlights• Nuclear energy is popular energy source in South Africa now.• Provision of sustainable energy services helps to find the sources for economic growth. • Renewable energy technologies have opportunity for reduce nuclear production in South Africa.• Bio-energy can become the main source of energy in South Africa

    Текущее управление отходамив банках 11 азиатских стран и ESG-отчетность Сбербанка

    Get PDF
    The relevance of the topic lies in the fact that the level of competitiveness of a bank in waste management will have an increasing impact on its ESG ratings in the future. The purpose of this paper is to improve waste management in a bank (mainly faulty office equipment and paper waste). However, not all banks use active management methods in waste management, so this article offers recommendations for the successful management of key indicators. The article uses data on waste from banks in Bangladesh, China, Indonesia, Kuwait, India, Malaysia, Nepal, Pakistan, Sri Lanka, the UAE, and Vietnam. The objectives of the study include: identification of the essence of the competitiveness of waste management in a bank; consideration of the types of competitiveness of waste management; assessment of the impact of blockchain technology on the competitiveness of waste management; assessment of minimizing waste management costs in a bank. A method for waste composition and waste export based on statistical analysis and a regression model. It used data about the current waste management activities of a bank. This study uses data from an annual time series covering the period from 2013 to 2021. The results of the study confirm that the problem of electronic waste of banks in Asia can be solved by increasing financing and a complete analysis of bank waste. There are points of novelty in the article: (1) the essence of the competitiveness of waste management in a bank is determined, which consists in the recycling of most waste and not in their disposal; (2) the ideas of the competitiveness of waste management are considered in Sberbank; (3) the impact of blockchain technology on the competitiveness of waste management in banks is assessed; (4) an assessment of the competitiveness of waste management in a commercial bank is given. In order to better understand the factors influencing the production of e-waste in the region, the study focuses on the significance of addressing the rising problem of e-waste in Asia and the need for better collection and analysis of waste data in a bank. The main conclusion is the need to recycle waste and increase recycling costs in the future, which is the most environmentally friendly option compared to incineration.Актуальность темы заключается в возрастающей роли ESG-рейтингов кредитных организаций, на которые может оказать отрицательное влияние уровень управления отходами в банках. Цель исследования — разработка рекомендаций по улучшению управления отходами в кредитных организациях (в основном это неисправная офисная техника и бумажные отходы). Использованы данные по управлению отходами банков в таких странах, как Бангладеш, Китай, Индонезия, Кувейт, Индия, Малайзия, Непал, Пакистан, Шри-Ланка, ОАЭ, Вьетнам. задачи исследования: выявить сущность конкурентоспособности управления отходами в банке; рассмотреть виды конкурентоспособности управления отходами; оценить влияние технологии блокчейн на конкурентоспособность управления отходами; оценить минимизацию затрат на управление отходами в банке. Применяется метод, основанный на регрессионной модели и статистическом анализе композиции отходов и экспорта отходов. Используются данные годовых временных рядов, охватывающих период с 2013 по 2021 г. Результаты исследования подтверждают, что проблема электронных отходов кредитных организаций в Азии может быть решена за счет повышения финансирования и полного анализа данных по отходам банков. Новизна исследования состоит в следующем: (1) определена сущность конкурентоспособности управления отходами в банках, которая состоит во вторичной переработке большинства отходов, а не в их утилизации; (2) рассмотрены виды конкурентоспособности обращения с отходами в Сбербанке; (3) оценено влияние технологии блокчейн на конкурентоспособность управления отходами в банках; (4) дана оценка конкурентоспособности управления отходами в банках. В исследовании подчеркивается важность решения растущей проблемы электронных отходов в Азии и необходимость более полного сбора и анализа данных об отходах в банках для лучшего понимания факторов, определяющих образование электронных отходов в регионе. Сделан вывод о необходимости переработки отходов и повышения расходов на их переработку в будущем, что является наиболее экологичным вариантом по сравнению со сжиганием

    Анализ финансовой эффективности энергетических проектов и производства возобновляемой энергии в России

    Get PDF
    The authors study the development of the oil and gas industry and assess the financial efficiency of the use of renewable energy sources, which determine the relevance of the research topic. The purpose of this work is to study the effectiveness of the development of the Russian energy sector and its contribution to the world economy. The main question to which this article should give an answer is that how the Russian power industry will develop in corresponding to the global trends in energy consumption. This paper uses a method for finding the parameters of the efficiency of renewable energy sources using exponential smoothing. The paper uses data from the analytical report of British Petroleum and the Bloomberg system for the period from January 2012 to December 2019. The result of the study shows an improvement in the accuracy of the predicted values, while previous models had higher standard error estimates. The novelty of the study is to achieve accurate results of the forecast of fossil-fuel consumption for 3 years ahead (the forecast accuracy is 80.5). The article concludes that while Russian oil and gas projects are very important for the Russian economy until now, renewable energy projects are more beneficial. In addition, Russia does not seem to support the global trend towards a renewable and sustainable economy. Although oil and gas prices remain acceptable, unforeseen changes in the behavior of real buyers can hinder the efficiency of the Russian economy and lead to a disruption of Russia’s economic growth if Russia does not decisively steer towards renewable energy from now on. The growth of the Russian power industry corresponds to the global trends in fossil energy consumption (while fossil prices, thus incomes keep worsening), and thus innovative solutions for enhancing renewable energies must be adopted. The article proves that many pipeline projects (South Stream, Turkish Stream, Nord Stream 2) move the Russian energy sector back to the past because they just contradict existing trends.Авторы изучают развитие нефтегазовой отрасли и оценивают финансовую эффективность использования возобновляемых источников энергии, что определяет актуальность темы исследования. Целью данной работы является изучение эффективности развития российского энергетического сектора и его вклада в мировую экономику. Главный вопрос, на который должна дать ответ эта статья, заключается в том, как будет развиваться российская энергетика в соответствии с мировыми тенденциями потребления энергии. Авторы применяют метод параметров эффективности возобновляемых источников энергии с использованием экспоненциального сглаживания. Исследование основано на данных аналитического отчета British Petroleum и системы Bloomberg за период с января 2012 по декабрь 2019 г. В результате показано улучшение точности прогнозируемых значений, в то время как предыдущие модели имели более высокие оценки стандартной ошибки. Новизна исследования заключается в достижении точных результатов прогноза потребления ископаемого топлива на 3 года вперед (точность прогноза составляет 80,5). Сделан вывод о том, что, хотя российские нефтегазовые проекты до сих пор очень важны для российской экономики, проекты в области возобновляемых источников энергии более выгодны. Кроме того, Россия, похоже, не поддерживает глобальную тенденцию к возобновляемой и устойчивой экономике. Хотя цены на нефть и газ остаются приемлемыми, непредвиденные изменения в поведении реальных покупателей могут помешать развитию российской экономики и привести к нарушению экономического роста России, если она не будет ориентироваться на возобновляемые источники энергии. Рост российской электроэнергетики соответствует мировым тенденциям (в то время как цены на ископаемые ресурсы, следовательно, и доходы продолжают падать), и поэтому необходимо принять инновационные решения по расширению использования возобновляемых источников энергии. В статье доказано, что многие проекты («Южный поток», «Турецкий поток», «Северный поток-2») направляют российский энергетический сектор в прошлое, противореча мировым тенденциям в энергетике

    Oil Price Predictors: Machine Learning Approach

    Get PDF
    The paper proposes a machine-learning approach to predict oil price. Market participants can forecast prices using such factors as: US key rate, US dollar index, S&P500 index, VIX index, US consumer price index. After analyzing the results and comparing the accuracy of the model first, we can conclude that oil prices in 2019-2022 will have a slight upward trend and will generally be stable. At the time of the fall in June 2012 the  price of Brent fell to a minimum of 17 months. The reason for this was the weak demand for oil futures, which was caused by poor data on the state of the US labor market. Keywords: oil price shocks, economic growth, oil impact, factors, dollar index, inflation; key rate; volatility index; S&P500 index. JEL Classification: C51, C58, F31, G12, G15 DOI: https://doi.org/10.32479/ijeep.759

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    Get PDF
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC

    Get PDF
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOThis letter presents the first measurement of jet mass in Pb-Pb and Pb-Pb collisions at root s(NN) = 2.76 TeV and root s(NN) = 5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at collider energies. Jets are reconstructed from charged particles using the anti-k(T) jet algorithm and resolution parameter R = 0.4. The jets are measured in the pseudorapidity range |eta(jet)| < 0.5 and in three intervals of transverse momentum between 60 GeV/c and 120 GeV/c. The measurement of the jet mass in central Pb-Pb collisions is compared to the jet mass as measured in p-Pb reference collisions, to vacuum event generators, and to models including jet quenching. It is observed that the jet mass in central Pb-Pb collisions is consistent within uncertainties with p-Pb reference measurements. Furthermore, the measured jet mass in Pb-Pb collisions is not reproduced by the quenching models considered in this letter and is found to be consistent with PYTHIA expectations within systematic uncertainties.776249264CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOAgências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig

    Measurement of the production of high-p(T) electrons from heavy-flavour hadron decays in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPElectrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass of energy root s(NN) = 2.76 TeV. The transverse momentum (pT) differential production yields at mid-rapidity were used to calculate the nuclear modification factor R-AA in the interval 3 < p(T) < 18 GeV/c. The R-AA shows a strong suppression compared to binary scaling of pp collisions at the same energy (up to a factor of 4) in the 10% most central Pb-Pb collisions. There is a centrality trend of suppression, and a weaker suppression (down to a factor of 2) in semi-peripheral (50-80%) collisions is observed. The suppression of electrons in this broad p(T) interval indicates that both charm and beauty quarks lose energy when they traverse the hot medium formed in Pb-Pb collisions at LHC.771467481CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçãoThe ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Education of China (MOE of China), Ministry of Science & Technology of China (MOST of China) and National Natural Science Foundation of China (NSFC), China; Ministry of Science, Education and Sports and Croatian Science Foundation, Croatia; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; Danish National Research Foundation (DNRF), The Carlsberg Foundation and The Danish Council for Independent Research–Natural Sciences, Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), India; Indonesian Institute of Science, Indonesia; Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia y Tecnología (CONACYT), through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nationaal instituut voor subatomaire fysica (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), South Korea; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Ministerio de Ciencia e Innovacion, Spain; Knut & Alice Wallenberg Foundation (KAW) and Swedish Research Council (VR), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Office of the Higher Education Commission under NRU project of Thailand and Suranaree University of Technology (SUT), Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States

    Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at root s=7 TeV

    Get PDF
    Sem informaçãoTwo-particle angular correlations were measured in pp collisions at root s = 7 TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon-baryon and anti-baryon-anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an open question.778117Sem informaçãoSem informaçãoSem informaçãoFunded by SCOAP3

    Evolution of the longitudinal and azimuthal structure of the near-side jet peak in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPIn two-particle angular correlation measurements, jets give rise to a near-side peak, formed by particles associated to a higher-p(T) trigger particle. Measurements of these correlations as a function of pseudorapidity (Delta eta) and azimuthal (Delta phi) differences are used to extract the centrality and p(T) dependence of the shape of the near-side peak in the p(T) range 1 < p(T) < 8 GeV/c in Pb-Pb and pp collisions at root s(NN) = 2.76 TeV. A combined fit of the near-side peak and long-range correlations is applied to the data and the peak shape is quantified by the variance of the distributions. While the width of the peak in the Delta phi direction is almost independent of centrality, a significant broadening in the Delta eta direction is found from peripheral to central collisions. This feature is prominent for the low-p(T) region and vanishes above 4 GeV/c. The widths measured in peripheral collisions are equal to those in pp collisions in the Delta phi direction and above 3 GeV/c in the Delta eta direction. Furthermore, for the 10% most central collisions and 1 < p(T, assoc) < 2 GeV/c, 1 < p(T,trig) < 3 GeV/c, a departure from a Gaussian shape is found: a depletion develops around the center of the peak. The results are compared to A Multi-Phase Transport (AMPT) model simulation as well as other theoretical calculations indicating that the broadening and the development of the depletion are connected to the strength of radial and longitudinal flow.963118CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçãoThe ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung fur Forschung, Technologie und Entwicklung, Austria; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (Finep), and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil; Ministry of Education of China (MOE of China), Ministry of Science & Technology of China (MOST of China), and National Natural Science Foundation of China (NSFC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; Danish National Research Foundation (DNRF), The Carlsberg Foundation and The Danish Council for Independent Research-Natural Sciences, Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat a l'Energie Atomique (CEA) and Institut National de Physique Nucleaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), India; Indonesian Institute of Science, Indonesia; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI, and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnologia, through Fondo de Cooperacion Internacional en Ciencia y Tecnologia (FONCICYT) and Direccion General de Asuntos del Personal Academico (DGAPA), Mexico; Nationaal instituut voor subatomaire fysica (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Catolica del Peru, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), South Korea; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) and Ministerio de Ciencia e Innovacion, Spain; Knut & AliceWallenberg Foundation (KAW) and Swedish Research Council (VR), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Office of the Higher Education Commission under NRU project of Thailand and Suranaree University of Technology (SUT), Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States
    corecore