67 research outputs found
Theory and computations of two-photon absorbing photochromic chromophores
Exponential growth in information technology generates ever increasing amounts of data, making recording density of the storage media crucially important. Two-photon absorption was proposed as a basis for high-density multi-layer technology for optical memory and logic devices. This technology suggests to use polymers, doped with photochromic compounds that undergo a reversible photoinduced isomerization, or photoswitching. In this review we consider recent theoretical works and benchmarking studies of the DFT-based methods, capable to predict two-photon absorption (2PA) and photochemical activity, Next we review the applications of these methods to design a prototype molecule that combines the photon-mode recording property of photochromic compounds with large 2PA cross-section. We conclude that a posteriori Tamm-Dancoff approximation to the second order CEO approach in Density Functional Theory is the powerful tool for both quantitative predictions and qualitative understanding of the excited state processes in photophysics and photochemistry. We also emphasize general principles for the rational design of a two-photon operated photoswitch
Double excitations and state-to-state transition dipoles in pi-pi* excited singlet states of linear polyenes: Time-dependent density-functional theory versus multiconfigurational methods
The effect of static and dynamic electron correlation on the nature of excited states and state-to-state transition dipole moments is studied with a multideterminant wave function approach on the example of all-trans linear polyenes (C4H6, C6H8, and C8H10). Symmetry-forbidden singlet nA(g) states were found to separate into three groups: purely single, mostly single, and mostly double excitations. The excited-state absorption spectrum is dominated by two bright transitions: 1B(u)-2A(g) and 1B(u)-mA(g), where mA(g) is the state, corresponding to two-electron excitation from the highest occupied to lowest unoccupied molecular orbital. The richness of the excited-state absorption spectra and strong mixing of the doubly excited determinants into lower-nA(g) states, reported previously at the complete active space self-consistent field level of theory, were found to be an artifact of the smaller active space, limited to pi orbitals. When dynamic sigma-pi correlation is taken into account, single- and double-excited states become relatively well separated at least at the equilibrium geometry of the ground state. This electronic structure is closely reproduced within time-dependent density-functional theory (TD DFT), where double excitations appear in a second-order coupled electronic oscillator formalism and do not mix with the single excitations obtained within the linear response. An extension of TD DFT is proposed, where the Tamm-Dancoff approximation (TDA) is invoked after the linear response equations are solved (a posteriori TDA). The numerical performance of this extension is validated against multideterminant-wave-function and quadratic-response TD DFT results. It is recommended for use with a sum-over-states approach to predict the nonlinear optical properties of conjugated molecules
QCL active region overheat in pulsed mode: effects of non-equilibrium heat dissipation on laser performance
Quantum cascade lasers are of high interest in the scientific community due
to unique applications utilizing the emission in mid-IR range. The possible
designs of QCL are quite limited and require careful engineering to overcome
some crucial disadvantages. One of them is an active region (ARn) overheat,
that significantly affects the laser characteristics in the pulsed operation
mode. In this work we consider the effects related to the non-equilibrium
temperature distribution, when thermal resistance formalism is irrelevant. We
employ the heat equation and discuss the possible limitations and structural
features stemming from the chemical composition of the AR. We show that the
presence of alloys in the ARn structure fundamentally limits the heat
dissipation in pulsed and CW regimes due to their low thermal conductivity.
Also the QCL post-growths affects the thermal properties of a device only in
(near)CW mode while it is absolutely invaluable in the pulsed mod
Seasonality of isotopic and chemical species and biomass burning signals remaining in wet snow in the accumulation area of Sofiyskiy Glacier, Russian Altai Mountains
Preliminary glaciological investigation was carried out on the accumulation area of Sofiyskiy Glacier, Russian Altai Mountains in July 2000. Analyses of a 12.3m core and 3m deep pit samples show that seasonal variations of δ^O, tritium and melt features remained in the wet snow layers. Annual layer thickness determined on the basis of seasonality of these elements for 12.3m core is 0.99m of water on average in 1994-1999 with a minimum in 1998 when the minimum mass balance was observed for three other glaciers in the Altai Mountains. High correlations of NH_4^+ concentration with concentrations of K^+, SO_4^2, NO_3^- and PO_4^ are found. NH_4^+ and K^+ are considered to be of biomass burning origin, and PO_4^ and NH_4^+ are due to chemical ingredients used for fire extinction in biomass burning
ロシア・アルタイ山脈ソフィスキー氷河で2001年に掘削した25.3mコアの層位と粒径
ArticleBulletin of glaciological research. 21: 65-69 (2004)journal articl
The ALICE experiment at the CERN LHC
ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008
Theoretical Photochemistry Of The Photochromic Molecules Based On Density Functional Theory Methods
Mechanism of photoswitching in diarylethenes involves the light-initiated symmetry-allowed disrotatory electrocyclic reaction. Here we propose a computationally inexpensive Density Functional Theory (DFT) based method that is able to produce accurate potential surfaces for the excited states. The method includes constrained optimization of the geometry for the ground and two excited singlet states along the ring-closing reaction coordinate using the Slater Transition State method, followed by single-point energy evaluation. The ground state energy is calculated with the broken-symmetry unrestricted Kohn-Sham formalism (UDFT). The first excited state energy is obtained by adding the UDFT ground state energy to the excitation energy of the pure singlet obtained in the linear response Time-Dependent (TD) DFT restricted Kohn-Sham formalism. The excitation energy of the double excited state is calculated using a recently proposed (Mikhailov, I. A.; Tafur, S.; Masunov, A. E. Phys. Rev. A 77, 012510, 2008) a posteriori Tamm-Dancoff approximation to the second order response TD-DFT. © 2009 Springer Berlin Heidelberg
Chains Stiffness Effect on the Vertical Segregation of Mixed Polymer Brushes in Selective Solvent
The microstructure of the binary polymer brushes in the selective solvent was studied using the numerical lattice self-consisting field approach. The case was considered when the selectivity to the solvent (the Flory–Huggins parameter χ) was varied only for one type of chains (responsive chains) while the others (non-responsive chains) remained hydrophilic (χ = 0). In such a brush, with an increase in the hydrophobicity of the responsive chains, a transition occurs between two two-layer microstructures. In the initial state the ends of the longer responsive chains are located near the external surface of the brush and those of non-responsive chains are inside the brush. When the hydrophobicity of the responsive chains becomes high enough then the reversed two-layer microstructure is formed, when the ends of non-responsive chains are located near the brush surface and the responsive chains collapse on the brush bottom. In contrast to previous works, the stiffness parameter (Kuhn segment length p) for one or for both types of chains was varied and its effect on the mechanism and characteristics of the transition was studied. If the stiffness of only responsive chains increases, then the transition occurs with the formation of an intermediate three-layer microstructure, where a layer of responsive chains is located between layers formed by non-responsive ones. If both types of chains have the same p, then the transition occurs gradually without the formation of an intermediate three-layer microstructure. For both cases, the effect of p on the critical value of χ*, corresponding to the transition point and on the steepness of the transition was investigated
- …