7 research outputs found

    Modeling Changes in the Composition of River Water with Discharged Wastewater: A Case Study in NW Russia

    No full text
    The technogenic impact of the development of the Lomonosov diamond deposit is associated with the discharge of quarry and drainage water into the river, which has a special conservation status. Earlier studies on the composition of bottom sediments showed that there are signs of increased accumulation of heavy metals and radionuclides at wastewater discharge sites. The purpose of this work was to predict changes in the composition of surface water and bottom sediment in the river during the further development of mining operations with brackish and salty water captured by drainage systems, the presence of which was established in the zone of their future influence. For this, a simulation of changes in the composition of the water in the river was carried out using the GEOCHEQ software package by minimizing the free energy of the system using a convex simplex algorithm. It was found that the maximum salinity of surface water can reach 1.51 g/L. In this case, the MPC of Cl−, Na+, SO42−, Mg2+, Sr, V, and U can be exceeded for fishery watercourses. The genetic basis of the accumulation of these components in solutions for mixing was considered. According to the calculations, when about 5000 m3/h of drainage water is discharge d into the river, the mass of precipitated chemical elements will be 56–191 t/h, including up to 2.1 t/h of iron; therefore, accumulation in the discharge zone must be controlled

    Modeling Changes in the Composition of River Water with Discharged Wastewater: A Case Study in NW Russia

    No full text
    The technogenic impact of the development of the Lomonosov diamond deposit is associated with the discharge of quarry and drainage water into the river, which has a special conservation status. Earlier studies on the composition of bottom sediments showed that there are signs of increased accumulation of heavy metals and radionuclides at wastewater discharge sites. The purpose of this work was to predict changes in the composition of surface water and bottom sediment in the river during the further development of mining operations with brackish and salty water captured by drainage systems, the presence of which was established in the zone of their future influence. For this, a simulation of changes in the composition of the water in the river was carried out using the GEOCHEQ software package by minimizing the free energy of the system using a convex simplex algorithm. It was found that the maximum salinity of surface water can reach 1.51 g/L. In this case, the MPC of Cl−, Na+, SO42−, Mg2+, Sr, V, and U can be exceeded for fishery watercourses. The genetic basis of the accumulation of these components in solutions for mixing was considered. According to the calculations, when about 5000 m3/h of drainage water is discharge d into the river, the mass of precipitated chemical elements will be 56–191 t/h, including up to 2.1 t/h of iron; therefore, accumulation in the discharge zone must be controlled

    CoCuMgAl-Mixed-Oxide-Based Catalysts with Fine-Tunable Composition for the Hydrogenation of Furan Compounds

    No full text
    Catalysts based on CoCuMgAl mixed oxides were synthesized and studied in the hydrogenations of furfural and 5-hydroxymethylfurfural under different conditions. The changes in the structural properties of the catalysts at different stages of their preparation were studied using a set of physical methods (XRD, SEM, and TEM). It was shown that the fine regulation of the chemical compositions of the mixed oxides (i.e., changes in the Co/Cu ratio) made it possible to vary the structure, morphology, and catalytic properties of the samples. The phase composition of catalysts with Co/Cu = 1 did not change during the catalytic reaction, although the initial catalysts had a less-homogeneous morphology. 5-hydroxymethylfurfural conversion was higher for the samples with Co/Cu = 1. Furfural conversion increased when raising the Co/Cu ratio. The selectivity toward furfuryl alcohol for the catalyst with Co/Cu = 2 under mild conditions of furfural hydrogenation was more than 99%. The results obtained are important for the development of the scientific foundations of the preparation of hydrogenation catalysts with a fine-tunable composition in order to obtain the desired hydrogenation products

    Catalysts Derived from Nickel-Containing Layered Double Hydroxides for Aqueous-Phase Furfural Hydrogenation

    No full text
    Changes in the structural and textural properties of NiAl-layered double hydroxides (LDHs) (with 2–4 molar ratios of metals) and state of nickel that occur in different steps of the synthesis of nickel catalysts were studied using XRD, thermal analysis, TPR, low-temperature nitrogen adsorption, XANES, EXAFS, and electron microscopy methods. Relations between nickel content, catalyst reduction conditions, state of nickel, and its catalytic properties were revealed. It was shown that the use of NiAl LDH as the catalyst precursor even at a high content of active metal allows for the obtaining of the dispersed particles of supported nickel that are active in the aqueous-phase hydrogenation of furfural. The catalyst activity and conversion of furfural were found to increase with elevation of the catalyst reduction temperature and the corresponding growth of the fraction of reduced nickel. However, a lower reduction temperature (500 °C) makes it possible to form smaller nickel particles with the size of 4–6 nm, and a high Ni content (Ni:Al = 4) can be used to obtain the active Ni@NiAlOx catalyst. Under mild reaction conditions (90 °C, 2.0 MPa), the furfural conversion reached 93%, and furfuryl alcohol was formed with the selectivity of 70%. Under more severe reaction conditions (150 °C, 3.0 MPa), complete conversion of furfural was achieved, and cyclopentanol and tetrahydrofurfuryl alcohol were the main hydrogenation products

    Sustainable Hydrogenation of Vinyl Derivatives Using Pd/C Catalysts

    No full text
    The hydrogenation of unsaturated double bonds with molecular hydrogen is an efficient atom-economic approach to the production of a wide range of fine chemicals. In contrast to a number of reducing reagents typically involved in organic synthesis, hydrogenation with H2 is much more sustainable since it does not produce wastes (i.e., reducing reagent residues). However, its full sustainable potential may be achieved only in the case of easily separable catalysts and high reaction selectivity. In this work, various Pd/C catalysts were used for the liquid-phase hydrogenation of O-, S-, and N-vinyl derivatives with molecular hydrogen under mild reaction conditions (room temperature, pressure of 1 MPa). Complete conversion and high hydrogenation selectivity (>99%) were achieved by adjusting the type of Pd/C catalyst. Thus, the proposed procedure can be used as a sustainable method for vinyl group transformation by hydrogenation reactions. The discovery of the stability of active vinyl functional groups conjugated with heteroatoms (O, S, and N) under hydrogenation conditions over Pd/C catalysts opens the way for many useful transformations
    corecore