2 research outputs found

    Microstructure and Hardness of Hollow Tube Shells at Piercing in Two-High Screw Rolling Mill with Different Plugs

    No full text
    AA6060 ingots were pierced in a two-high screw rolling mill (MISIS-130D) with guiding shoes (Mannesmann mill type). Three different plugs, i.e., a conventional entire plug, a plug with a cavity, and a hollow plug, were used for piercing. We established that the grain size decreases after piercing, by order of magnitude, compared to the initial non-pierced annealed bill, with a grain size of 100–400 μm, and the hollow shell grains are elongated along the piercing direction. The produced hollow shells had 30% higher hardness than the initial billet. The highest hardness values were obtained after piercing the conventional entire plug. The most uniform hardness distribution through the hollow shell’s volume was obtained after piercing the hollow plug. The cross and longitudinal section hardness measurements demonstrate that the hardness decreases from the outer surface to the inner surface of the hollow shells

    Simulation of the Kinematic Condition of Radial Shear Rolling and Estimation of Its Influence on a Titanium Billet Microstructure

    No full text
    The finite element method (FEM) computer simulation of the three-high radial shear rolling of Ti-6Al-4V alloy round billets was conducted using QForm software. The simulation was performed for the MISIS-100T rolling mill’s three passes according to the following rolling route: 76 mm (the initial billet diameter) →65 mm→55 mm→48 mm (the final billet diameter). The change in the total velocity values for the points on the radius of the 48 mm diameter billet was estimated while passing the rolls’ draft. The relative increase in the accumulated strain was estimated for the same points. Then, experimental shear rolling was performed. Grain sizes of the α- and β-phases were estimated in the cross section of the final billet at the stationary stage of rolling. The grain size distribution histograms for different phases were plotted. An area was found in the billet’s cross section in which the trend of change in the total velocity of the points changed. This area represented a neutral layer between the slowing peripheral segments of the billet and the accelerating central segments of the billet. Inside this neutral layer, the limits of the cylindrical surface radius value were estimated. Experimental radial shear rolling was performed to compare the experimental rolling results (the billet microstructure investigation) with the computer simulation results. The computer simulation obtained two estimations of the radius limits: 8–16 mm (based on the analysis of the total velocity change) and 12–16 mm (based on the accumulated strain’s relative increment change). The experimental rolling obtained two more estimations of the radius limits: 8.4–19.5 mm and 11.3–19.7 mm—based on the results of the microstructure investigation. It was confirmed that varying the kinematic and deformation parameters of radial shear rolling allows regulation of the thickness of the peripheral fine-grain layer and the diameter of the central coarse-grain layer of the rolled billets
    corecore