42 research outputs found

    Chiral photonic super-crystals based on helical van der Waals homostructures

    Full text link
    Chirality is probably the most mysterious among all symmetry transformations. Very readily broken in biological systems, it is practically absent in naturally occurring inorganic materials and is very challenging to create artificially. Chiral optical wavefronts are often used for the identification, control and discrimination of left- and right-handed biological and other molecules. Thus, it is crucially important to create materials capable of chiral interaction with light, which would allow one to assign arbitrary chiral properties to a light field. In this paper, we utilized van der Waals technology to assemble helical homostructures with chiral properties (e. g. circular dichroism). Because of the large range of van der Waals materials available such helical homostructures can be assigned with very flexible optical properties. We demonstrate our approach by creating helical homostructures based on multilayer As2_2S3_3, which offers the most pronounced chiral properties even in thin structures due to its strong biaxial optically anisotropy. Our work showcases that the chirality of an electromagnetic system may emerge at an intermediate level between the molecular and the mesoscopic one due to the tailored arrangement of non-chiral layers of van der Waals crystals and without additional patterning

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic

    Modeling the Territorial Structure Dynamics of the Northern Part of the Volga-Akhtuba Floodplain

    No full text
    The subject of our study is the tendency to reduce the floodplain area of regulated rivers and its impact on the degradation of the socio-environmental systems in the floodplain. The aim of the work is to create a new approach to the analysis and forecasting of the multidimensional degradation processes of floodplain territories under the influence of natural and technogenic factors. This approach uses methods of hydrodynamic and geoinformation modeling, statistical analysis of observational data and results of high-performance computational experiments. The basis of our approach is the dynamics model of the complex structure of the floodplain. This structure combines the characteristics of the frequency ranges of flooding and the socio-environmental features of various sites (cadastral data of land use). Modeling of the hydrological regime is based on numerical shallow water models. The regression model of the technogenic dynamics of the riverbed allowed us to calculate corrections to the parameters of real floods that imitate the effect of this factor. This made it possible to use digital maps of the modern topography for hydrodynamic modeling and the construction of floods maps for past and future decades. The technological basis of our study is a set of algorithms and software, consisting of three modules. The data module includes, first of all, the cadastres of the territory of the Volga-Akhtuba floodplain (VAF, this floodplain is the interfluve of the Volga and Akhtuba rivers for the last 400 km before flowing into the Caspian Sea), satellite and natural observation data, spatial distributions of parameters of geoinformation and hydrodynamic models. The second module provides the construction of a multilayer digital model of the floodplain area, digital maps of floods and their aggregated characteristics. The third module calculates a complex territorial structure, criteria for the state of the environmental and socio-economic system (ESES) and a forecast of its changes. We have shown that the degradation of the ESES of the northern part of the VAF is caused by the negative dynamics of the hydrological structure of its territory, due to the technogenic influence the hydroelectric power station on the Volga riverbed. This dynamic manifests itself in a decrease in the stable flooded area and an increase in the unflooded and unstable flooded areas. An important result is the forecast of the complex territorial structure and criteria for the state of the interfluve until 2050

    Coupled thermal analysis of carbon layers deposited on alumina nanofibres

    Get PDF
    Catalyst-free chemical vapor deposition is used to form thin (1–2 nm) carbon layers on the surface of alumina nanofibers resulting in carbon-alumina nanocomposites. Thermal analysis, X-ray fluorescent microanalysis, Raman spectroscopy, and electrical resistance measurements of these composites show that increasing of synthesis time not only increases the amount of carbon on alumina surface, but also the ordering and density of the carbon layers. Nitrogen adsorption data reveal the decrease of total pore volume with increasing the synthesis time. The obtained composite material could be employed for the preparation of ion-selective membranes with switchable ion transport, electroconductive ceramics, and electrochemical sensors

    The Problem of Effective Evacuation of the Population from Floodplains under Threat of Flooding: Algorithmic and Software Support with Shortage of Resources

    No full text
    Extreme flooding of the floodplains of large lowland rivers poses a danger to the population due to the vastness of the flooded areas. This requires the organization of safe evacuation in conditions of a shortage of temporary and transport resources due to significant differences in the moments of flooding of different spatial parts. We consider the case of a shortage of evacuation vehicles, in which the safe evacuation of the entire population to permanent evacuation points is impossible. Therefore, the evacuation is divided into two stages with the organization of temporary evacuation points on evacuation routes. Our goal is to develop a method for analyzing the minimum resource requirement for the safe evacuation of the population of floodplain territories based on a mathematical model of flood dynamics and minimizing the number of vehicles on a set of safe evacuation schedules. The core of the approach is a numerical hydrodynamic model in shallow water approximation. Modeling the hydrological regime of a real water body requires a multi-layer geoinformation model of the territory with layers of relief, channel structure, and social infrastructure. High-performance computing is performed on GPUs using CUDA. The optimization problem is a variant of the resource investment problem of scheduling theory with deadlines for completing work and is solved on the basis of a heuristic algorithm. We use the results of numerical simulation of floods for the Northern part of the Volga-Akhtuba floodplain to plot the dependence of the minimum number of vehicles that ensure the safe evacuation of the population. The minimum transport resources depend on the water discharge in the Volga river, the start of the evacuation, and the localization of temporary evacuation points. The developed algorithm constructs a set of safe evacuation schedules for the minimum allowable number of vehicles in various flood scenarios. The population evacuation schedules constructed for the Volga-Akhtuba floodplain can be used in practice for various vast river valleys

    Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches

    No full text
    Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient’s life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods

    Wearable Light-and-Motion Dataloggers for Sleep/Wake Research: A Review

    No full text
    Long-term recording of a person’s activity (actimetry or actigraphy) using devices typically worn on the wrist is increasingly applied in sleep/wake, chronobiological, and clinical research to estimate parameters of sleep and sleep-wake cycles. With the recognition of the importance of light in influencing these parameters and with the development of technological capabilities, light sensors have been introduced into devices to correlate physiological and environmental changes. Over the past two decades, many such new devices have appeared from different manufacturers. One of the aims of this review is to help researchers and clinicians choose the data logger that best fits their research goals. Seventeen currently available light-and-motion recorders entered the analysis. They were reviewed for appearance, dimensions, weight, mounting, battery, sensors, features, communication interface, and software. We found that all devices differed from each other in several features. In particular, six devices are equipped with a light sensor that can measure blue light. It is noteworthy that blue light most profoundly influences the physiology and behavior of mammals. As the wearables market is growing rapidly, this review helps guide future developments and needs to be updated every few years

    Wearable Light-and-Motion Dataloggers for Sleep/Wake Research: A Review

    No full text
    Long-term recording of a person’s activity (actimetry or actigraphy) using devices typically worn on the wrist is increasingly applied in sleep/wake, chronobiological, and clinical research to estimate parameters of sleep and sleep-wake cycles. With the recognition of the importance of light in influencing these parameters and with the development of technological capabilities, light sensors have been introduced into devices to correlate physiological and environmental changes. Over the past two decades, many such new devices have appeared from different manufacturers. One of the aims of this review is to help researchers and clinicians choose the data logger that best fits their research goals. Seventeen currently available light-and-motion recorders entered the analysis. They were reviewed for appearance, dimensions, weight, mounting, battery, sensors, features, communication interface, and software. We found that all devices differed from each other in several features. In particular, six devices are equipped with a light sensor that can measure blue light. It is noteworthy that blue light most profoundly influences the physiology and behavior of mammals. As the wearables market is growing rapidly, this review helps guide future developments and needs to be updated every few years
    corecore