4 research outputs found

    Development of an Algorithm for Calculating the Moisture Content and Time of Forest Fire Maturation of Forest Combustible Materials for Determining Forest Fire Hazards

    No full text
    Nowadays, forests play an important role in stabilizing the ecological balance, being one of the most important components of the biosphere. Due to the vital activity of forests, the gas composition of the atmosphere is normalized. Mass forest fires have the opposite effect. They cause irreparable damage to flora and fauna, contribute to the melting of Arctic ice, an increase in the Earth’s temperature, and destabilization of the carbon balance. The purpose of this study is to develop an algorithm for calculating the moisture content and time of forest fire maturation of forest combustible materials. To achieve this goal, the main factors determining a forest fire hazard have been studied, as well as a review of existing methods for assessing forest fire danger and scientific papers on forest pyrology. As a result of the analysis of the research aimed at studying the rate of drying of forest combustible materials (FCM), depending on the physical properties and environmental parameters, a dependency of changes in moisture content over time was obtained. With its help, knowing the initial moisture content of FCM, it is possible to calculate the periods of fire maturation for each component of the forest plantation. Cooperative use of the resulting algorithm with a digital twin of a forest stand makes it possible to identify the most fire-hazard forest areas and estimate the period of their fire-prone maturation

    Brillouin-Scattering Induced Noise in DAS: A Case Study

    No full text
    In the paper, the effect of spontaneous Brillouin scattering (SpBS) is analyzed as a noise source in distributed acoustic sensors (DAS). The intensity of the SpBS wave fluctuates over time, and these fluctuations increase the noise power in DAS. Based on experimental data, the probability density function (PDF) of the spectrally selected SpBS Stokes wave intensity is negative exponential, which corresponds to the known theoretical conception. Based on this statement, an estimation of the average noise power induced by the SpBS wave is given. This noise power equals the square of the average power of the SpBS Stokes wave, which in turn is approximately 18 dB lower than the Rayleigh backscattering power. The noise composition in DAS is determined for two configurations, the first for the initial backscattering spectrum and the second for the spectrum in which the SpBS Stokes and anti-Stokes waves are rejected. It is established that in the analyzed particular case, the SpBS noise power is dominant and exceeds the powers of the thermal, shot, and phase noises in DAS. Accordingly, by rejecting the SpBS waves at the photodetector input, it is possible to reduce the noise power in DAS. In our case, this rejection is carried out by an asymmetric Mach-Zehnder interferometer (MZI). The rejection of the SpBS wave is most relevant for broadband photodetectors, which are associated with the use of short probing pulses to achieve short gauge lengths in DAS

    A Cost-Effective Distributed Acoustic Sensor for Engineering Geology

    No full text
    A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed
    corecore