9 research outputs found

    Vanadium oxide - poly(3,4-ethylenedioxythiophene) cathodes for zinc-ion batteries: effect of synthesis temperature

    Get PDF
    Vanadium oxide composites with conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) were obtained by one-step microwave-assisted hydrothermal synthesis at two different temperatures: 120 and 170 °C (denoted as V-120 and V-170, respectively). The structure and composition of the obtained samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectro­scopy (XPS), and thermogravimetric (TG) analysis. The detailed study of the electro­chemical properties of the composites as cathodes of aqueous zinc-ion battery was per­formed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) at different current densities and by electrochemical impedance spectroscopy (EIS). It was shown that V-120 demonstrated excellent electrochemical performance in the 0.3 to 1.4 V vs. Zn/Zn2+ potential range reaching specific capacities of up to 390 mA∙h∙g−1 at 0.3 A∙g−1 with excel­lent capacity stability after 1000 charge-discharge cycles. Its functional parameters were found to be much better than those of the electrodes based on the V-170 composite obtained at a higher temperature. The effect of the synthesis temperature on the electro­chemical properties is discussed in terms of the crystallographic, compositional, and thermogravimetric properties of the samples

    Vanadium Oxide–Conducting Polymers Composite Cathodes for Aqueous Zinc-Ion Batteries: Interfacial Design and Enhancement of Electrochemical Performance

    No full text
    Aqueous zinc-ion batteries (AZIBs) are being intensively developed as potential alternative electrochemical power sources, due to their advantages such as low cost, high safety, abundance of natural zinc resources and appropriate energy density. Among currently investigated prospective cathode materials for AZIBs, vanadium oxide-based composites with intrinsically conducting polymers have shown many advantages, such as high capacity, high power density and long battery life. This review gives a focused view of the design for the boosting of zinc ion storage performance using intrinsically conducting polymers in vanadium oxide-based composites and the mechanism of intercalation processes. The main challenges in interfacial engineering of vanadium oxide-conducting polymers composite structures and the prospects for further development of such cathode materials are summarized and discussed. The review would give rise to a broad interest focusing on the advantageous strategy of the development of vanadium oxide composite cathodes with intrinsically conducting polymers (polyaniline, polypyrrole, poly(3,4-ethylenedioxythiophene)) for AZIBs with improved energy density, high-rate capability and stability

    Effect of Combined Conductive Polymer Binder on the Electrochemical Performance of Electrode Materials for Lithium-Ion Batteries

    No full text
    The electrodes of lithium-ion batteries (LIBs) are multicomponent systems and their electrochemical properties are influenced by each component, therefore the composition of electrodes should be properly balanced. At the beginning of lithium-ion battery research, most attention was paid to the nature, size, and morphology peculiarities of inorganic active components as the main components which determine the functional properties of electrode materials. Over the past decade, considerable attention has been paid to development of new binders, as the binders have shown great effect on the electrochemical performance of electrodes in LIBs. The study of new conductive binders, in particular water-based binders with enhanced electronic and ionic conductivity, has become a trend in the development of new electrode materials, especially the conversion/alloying-type anodes. This mini-review provides a summary on the progress of current research of the effects of binders on the electrochemical properties of intercalation electrodes, with particular attention to the mechanisms of binder effects. The comparative analysis of effects of three different binders (PEDOT:PSS/CMC, CMC, and PVDF) for a number of oxide-based and phosphate-based positive and negative electrodes for lithium-ion batteries was performed based on literature and our own published research data. It reveals that the combined PEDOT:PSS/CMC binder can be considered as a versatile component of lithium-ion battery electrode materials (for both positive and negative electrodes), effective in the wide range of electrode potentials

    Vanadium Oxide-Poly(3,4-ethylenedioxythiophene) Nanocomposite as High-Performance Cathode for Aqueous Zn-Ion Batteries: The Structural and Electrochemical Characterization

    No full text
    In this work the nanocomposite of vanadium oxide with conducting polymer poly(3,4-ethylenedioxythiophene) (VO@PEDOT) was obtained by microwave-assisted hydrothermal synthesis. The detailed study of its structural and electrochemical properties as cathode of aqueous zinc-ion battery was performed by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The initial VO@PEDOT composite has layered nanosheets structure with thickness of about 30–80 nm, which are assembled into wavy agglomerated thicker layers of up to 0.3–0.6 μm. The phase composition of the samples was determined by XRD analysis which confirmed lamellar structure of vanadium oxide V10O24∙12H2O with interlayer distance of about 13.6 Å. The VO@PEDOT composite demonstrates excellent electrochemical performance, reaching specific capacities of up to 390 mA∙h∙g−1 at 0.3 A∙g−1. Moreover, the electrodes retain specific capacity of 100 mA∙h∙g−1 at a high current density of 20 A∙g−1. The phase transformations of VO@PEDOT electrodes during the cycling were studied at different degrees of charge/discharge by using ex situ XRD measurements. The results of ex situ XRD allow us to conclude that the reversible zinc ion intercalation occurs in stable zinc pyrovanadate structures formed during discharge
    corecore