10 research outputs found

    Transition-metal interactions in aluminum-rich intermetallics

    Full text link
    The extension of the first-principles generalized pseudopotential theory (GPT) to transition-metal (TM) aluminides produces pair and many-body interactions that allow efficient calculations of total energies. In aluminum-rich systems treated at the pair-potential level, one practical limitation is a transition-metal over-binding that creates an unrealistic TM-TM attraction at short separations in the absence of balancing many-body contributions. Even with this limitation, the GPT pair potentials have been used effectively in total-energy calculations for Al-TM systems with TM atoms at separations greater than 4 AA. An additional potential term may be added for systems with shorter TM atom separations, formally folding repulsive contributions of the three- and higher-body interactions into the pair potentials, resulting in structure-dependent TM-TM potentials. Towards this end, we have performed numerical ab-initio total-energy calculations using VASP (Vienna Ab Initio Simulation Package) for an Al-Co-Ni compound in a particular quasicrystalline approximant structure. The results allow us to fit a short-ranged, many-body correction of the form a(r_0/r)^{b} to the GPT pair potentials for Co-Co, Co-Ni, and Ni-Ni interactions.Comment: 18 pages, 5 figures, submitted to PR

    Structure and Excitations of Orthorhombic Al3Co

    No full text
    this article describes practical aspects of the use of pair potentials in quasicrystal structure determination and results obtained on structures and structural excitations in decagonal phases

    Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

    Get PDF
    This article provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi \u3e CoOsReRu \u3e MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if the same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components

    Serge Abiteboul, Rakesh Agrawal, Phil Bernstein, Mike Carey, Stefano Ceri, Bruce Croft, David DeWitt, Mike Franklin,

    No full text
    This report summarizes the discussion and conclusions of the sixth ad-hoc meeting held May 4-6, 2003 in Lowell, Mass. It observes that information management continues to be a critical component of most complex software systems. It recommends that database researchers increase focus on: integration of text, data, code, and streams; fusion of information from heterogeneous data sources; reasoning about uncertain data; unsupervised data mining for interesting correlations; information privacy; and self-adaptation and repai
    corecore