12 research outputs found

    JAM-A regulates permeability and inflammation in the intestine in vivo

    Get PDF
    Recent evidence has linked intestinal permeability to mucosal inflammation, but molecular studies are lacking. Candidate regulatory molecules localized within the tight junction (TJ) include Junctional Adhesion Molecule (JAM-A), which has been implicated in the regulation of barrier function and leukocyte migration. Thus, we analyzed the intestinal mucosa of JAM-A–deficient (JAM-A−/−) mice for evidence of enhanced permeability and inflammation. Colonic mucosa from JAM-A−/− mice had normal epithelial architecture but increased polymorphonuclear leukocyte infiltration and large lymphoid aggregates not seen in wild-type controls. Barrier function experiments revealed increased mucosal permeability, as indicated by enhanced dextran flux, and decreased transepithelial electrical resistance in JAM-A−/− mice. The in vivo observations were epithelial specific, because monolayers of JAM-A−/− epithelial cells also demonstrated increased permeability. Analyses of other TJ components revealed increased expression of claudin-10 and -15 in the colonic mucosa of JAM-A−/− mice and in JAM-A small interfering RNA–treated epithelial cells. Given the observed increase in colonic inflammation and permeability, we assessed the susceptibility of JAM-A−/− mice to the induction of colitis with dextran sulfate sodium (DSS). Although DSS-treated JAM-A−/− animals had increased clinical disease compared with controls, colonic mucosa showed less injury and increased epithelial proliferation. These findings demonstrate a complex role of JAM-A in intestinal homeostasis by regulating epithelial permeability, inflammation, and proliferation

    Role of the intestinal barrier in inflammatory bowel disease

    No full text
    A critical function of the intestinal mucosa is to form a barrier that separates luminal contents from the interstitium. The single layer of intestinal epithelial cells (IECs) serves as a dynamic interface between the host and its environment. Cell polarity and structural properties of the epithelium is complex and is important in the development of epithelial barrier function. Epithelial cells associate with each other via a series of intercellular junctions. The apical most intercellular junctional complex referred to as the Apical Junction Complex (AJC) is important in not only cell-cell recognition, but also in the regulation of paracellular movement of fluid and solutes. Defects in the intestinal epithelial barrier function have been observed in a number of intestinal disorders such as inflammatory bowel disease (IBD). It is now becoming evident that an aberrant epithelial barrier function plays a central role in the pathophysiology of IBD. Thus, a better understanding of the intestinal epithelial barrier structure and function in healthy and disease states such as IBD will foster new ideas for the development of therapies for such chronic disorders

    Interferon-γ Regulates Intestinal Epithelial Homeostasis through Converging β-Catenin Signaling Pathways

    Get PDF
    SummaryInflammatory cytokines have been proposed to regulate epithelial homeostasis during intestinal inflammation. We report here that interferon-γ (IFN-γ) regulates the crucial homeostatic functions of cell proliferation and apoptosis through serine-threonine protein kinase AKT-β-catenin and Wingless-Int (Wnt)-β-catenin signaling pathways. Short-term exposure of intestinal epithelial cells to IFN-γ resulted in activation of β-catenin through AKT, followed by induction of the secreted Wnt inhibitor Dkk1. Consequently, we observed an increase in Dkk1-mediated apoptosis upon extended IFN-γ treatment and reduced proliferation through depletion of the Wnt coreceptor LRP6. These effects were enhanced by tumor necrosis factor-α (TNF-α), suggesting synergism between the two cytokines. Consistent with these results, colitis in vivo was associated with decreased β-catenin-T cell factor (TCF) signaling, loss of plasma membrane-associated LRP6, and reduced epithelial cell proliferation. Proliferation was partially restored in IFN-γ-deficient mice. Thus, we propose that IFN-γ regulates intestinal epithelial homeostasis by sequential regulation of converging β-catenin signaling pathways
    corecore