7 research outputs found

    An integrated analysis of air pollution from US coal-fired power plants

    No full text
    The United States is one of the world's leaders in electricity production, generating about 4116 billion kWh in 2021, of which coal accounted for 21.8% of the total. This study applies an integrated approach using both terrestrial and satellite data to specifically examine emissions from coal-fired power plants and its spatial extent. The study also highlights the effectiveness of government policies to reduce emissions. It was found that emission of pollutants from the country's energy sector has been steadily declining, with annual emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) decreasing from the US electric power sector between 1990 and 2020 by 93.4% and 84.8%, respectively, and carbon dioxide (CO2) by 37% between 2007 and 2020. Although overall emissions from coal-fired power plants are declining, some individual plants have yet to install environmental equipment to control emissions. According to US government data, major emitters of SO2, NOx, and CO2 in the US are the Martin Lake power plant in East Texas, the Labadie power plant near St. Louis, Missouri, and the James H Miller Jr plant near Birmingham, Alabama. This study also integrates TROPOMI satellite data to detect point emissions from individual power plants. While the highest levels of measured pollutants were over the country's major cities and areas of fossil fuel extraction, TROPOMI could clearly distinguish the pollution caused by power plants in more rural areas. Although the US has made great strides in reducing emissions from coal-fired power plants, these plants still represent a major source of pollution and remain a major concern. Totally eliminating coal as a power source will be difficult with the higher power demands resulting from the transition to electric automobiles

    Atmospheric pollution assessment near potential source of natural aerosols in the South Gobi Desert region, China

    No full text
    Rapid economic growth, a high degree of urbanization and the proximity of a large number of desert and semidesert landscapes can have a significant impact on the atmosphere of adjacent territories, leading to high levels of atmospheric pollution. Therefore, identifying possible sources of atmospheric pollution is one of the main tasks. In this study, we carried out an analysis of spatial and temporal characteristics of five main atmospheric pollutants (PM2.5, PM10, SO2, NO2, and CO) near potential source of natural aerosols, affecting seven cities (Wuhai, Alashan, Wuzhong, Zhongwei, Wuwei, Jinchang, Zhangye), located in immediate proximity to the South Gobi deserts. The results, obtained for the period from 1 January 2016 to 31 December 2018, demonstrate total concentrations of PM2.5 and PM10 are 38.2 ± 19.5 and 101 ± 80.7 μg/m3 exceeding the same established by the Chinese National Ambient Air Quality Standard (CNAAQS), being 35 and 70 μg/m3, respectively. Based on the data from Moderate Resolution Imaging Spectroradiometer (MODIS) for the whole period, Clean Сontinental (71.49%) and Mixed (22.29%) types of aerosols prevail in the region. In the spring and winter seasons maximum concentrations of pollutants and high values of Aerosol Optical Depth (AOD) in the region atmosphere are observed. PM2.5 and PM10 ratio shows the presence of coarse aerosols in the total content with value 0.43. The highest concentrations of pollutants were in the period of dust storms activity, when PM2.5 and PM10 content exceeded 200 and 1000 µg/m3, and AOD value exceeded 1. UV Aerosol Index (UVAI), Aerosol Absorbing Optical Depth (AAOD), and Single Scattering Albedo (SSA), obtained from Ozone Monitoring Instrument (OMI), demonstrate the high content of dust aerosols in the period of sandstorms. Analysis of backward trajectories shows that dust air masses moved from North to Northwest China, affecting large deserts such as Taklamakan, Gurbantunggut, Badain Jaran, Tengger, and Ulan Buh deserts

    An analysis of air pollution associated with the 2023 sand and dust storms over China: Aerosol properties and PM10 variability

    No full text
    Every spring, a large part of China is confronted with sand and dust storms (SDS) – mainly originating in the Gobi (including Chinese and Mongolian Gobi) and Taklamakan deserts. In March-April 2023, most of northern, northwestern and northeastern China was struck by three sandstorms that affected an area with more than 500 million people. In this study, aerosol optical, microphysical and radiative properties were studied during these SDS events using an integrated approach that combines satellite, terrestrial and re-analysis data. The results showed that dusty conditions were observed in most areas north of the Yangtze River (Chang Jiang) with daily average PM10 concentrations exceeding 1000 µg/m3 in many cities. VIIRS aerosol optical depth (AOD) at 550 nm during three SDS events exceeded a value of 1 throughout nearly the entire northern part of the country. The AERONET data obtained from the AOE_Baotou site showed a significant increase in total AOD and a corresponding decrease in AE during the SDS. The single scattering albedo (SSA), asymmetry parameter (ASY), real refractive index (RRI) and imaginary refractive index (IRI) values indicate an abundance of scattering coarse-mode particles. Aerosol radiative forcing (ARF) at top of the atmosphere and at the earth's surface was nearly always negative during the period and ranged from −48.5 to +2.7 Wm−2 and from −180.8 to −66.6 Wm−2, resulting in high positive ARF values at ATM (from +63.8 to +132.3 Wm−2). Each of these affects the heating of the atmosphere and cooling on the earth's surface. The atmospheric heating rates ranged from 1.8 to 3.7 K day−1. The formation of these SDS mainly resulted from the passage of cold fronts associated with low pressure systems in the Gobi and Taklamakan deserts, creating conditions for dust to rise into the atmosphere and move further downwind
    corecore