209 research outputs found

    Future Reactor Neutrino Oscillation Experiments at Krasnoyarsk

    Get PDF
    Recent studies of atmospheric neutrinos and the results from CHOOZ and Palo-Verde experiment call for new and more sensitive searches for neutrino oscillations at reactors. The main goal of the project considered here is to look for very small mixing angle oscillations of electron neutrinos in the atmospheric neutrino mass parameter region around \Delta m^2 ~3 10^-3 eV^2 and to define the element U_{e3} of the neutrino mixing matrix (U_{e3}is the contribution of the mass-3 state to the electron neutrino flavor state). The practical goal of the project is to decrease, relative to the CHOOZ, the statistic and systematic errors as much as possible. To achieve this we plan to use two identical antineutrino detectors each with a ~50-ton liquid scintillator target located at ~1100 m and ~250 m from the underground reactor (~600 mwe). Much attention is given to the detector calibration and monitoring procedures. As a first step we consider two much smaller pilot detectors each of ~ a 3 ton target mass stationed at ~20 m and 35-60 m from the reactor. The goals of this first stage are: (i) to accumulate necessary experience and (ii) to investigate with electron neutrinos the LSND mass parameter region.Comment: LaTeX file, 4 pages and 4 ps figure

    Present and Future Experiments in Non-equilibrium Reactor Antineutrino Energy Spectrum

    Full text link
    Considerable efforts that have been undertaken in the recent years in low energy antineutrino experiments require further systematic investigations in line of reactor antineutrino spectroscopy as a metrological basis of these experiments. We consider some effects associated with the non-equilibrium of reactor antineutrino radiation and residual antineutrino emission from spent reactor fuel in contemporary antineutrino experiments.Comment: 7 pages, 5 figures; Talk presented at International Conference NANP-2005, Dubna, Russia, Jun.-2005; Submitted to Phys. Atom. Nuc

    Two Detector Reactor Neutrino Oscillation Experiment Kr2Det at Krasnoyarsk. Status Report

    Full text link
    We consider status of the Kr2Det project aimed at sensitive searches for neutrino oscillations in the atmospheric neutrino mass parameter region around Dm2 ~ 3x10-3 eV2and at obtaining new information on the electron neutrino mass structure (Ue3).Comment: 4 pages in pdf file. Talk presented at NANP-2001 International Conference in Dubna, Russia, June 200

    The Kr2Det project: Search for mass-3 state contribution |U_{e3}|^2 to the electron neutrino using a one reactor - two detector oscillation experiment at Krasnoyarsk underground site

    Get PDF
    The main physical goal of the project is to search with reactor antineutrinos for small mixing angle oscillations in the atmospheric mass parameter region around {\Delta}m^{2}_{atm} ~ 2.5 10^{-3} eV^2 in order to find the element U_{e3} of the neutrino mixing matrix or to set a new more stringent constraint (U_{e3} is the contribution of mass-3 state to the electron neutrino flavor state). To achieve this we propose a "one reactor - two detector" experiment: two identical antineutrino spectrometers with \sim50 ton liquid scintillator targets located at ~100 m and ~1000 m from the Krasnoyarsk underground reactor (~600 mwe). In no-oscillation case ratio of measured positron spectra of the \bar{{\nu}_e} + p \to e^{+} + n reaction is energy independent. Deviation from a constant value of this ratio is the oscillation signature. In this scheme results do not depend on the exact knowledge of the reactor power, nu_e spectra, burn up effects, target volumes and, which is important, the backgrounds can periodically be measured during reactor OFF periods. In this letter we present the Krasnoyarsk reactor site, give a schematic description of the detectors, calculate the neutrino detection rates and estimate the backgrounds. We also outline the detector monitoring and calibration procedures, which are of a key importance. We hope that systematic uncertainties will not accede 0.5% and the sensitivity U^{2}_{e3} ~4 10^{-3} (at {\Delta}m^{2} = 2.5 10^{-3} eV^2) can be achieved.Comment: Latex 2e, 9 pages and 5 ps figure

    Neutrino Geophysics at Baksan I: Possible Detection of Georeactor Antineutrinos

    Full text link
    J.M. Herndon in 90-s proposed a natural nuclear fission georeactor at the center of the Earth with a power output of 3-10 TW as an energy source to sustain the Earth magnetic field. R.S. Raghavan in 2002 y. pointed out that under certain condition antineutrinos generated in georeactor can be detected using massive scintillation detectors. We consider the underground Baksan Neutrino Observatory (4800 m.w.e.) as a possible site for developments in Geoneutrino physics. Here the intrinsic background level of less than one event/year in a liquid scintillation ~1000 target ton detector can be achieved and the main source of background is the antineutrino flux from power reactors. We find that this flux is ~10 times lower than at KamLAND detector site and two times lower than at Gran Sasso laboratory and thus at Baksan the georeactor hypothesis can be conclusively tested. We also discuss possible search for composition of georector burning nuclear fuel by analysis of the antineutrino energy spectrum.Comment: 7 pages in LaTeX, 3 PS figures, Submitted to Physics of Atomic Nucle
    corecore