154 research outputs found
Recommended from our members
Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations
We extend our earlier model for Rayleigh-Taylor and Richtmyer-Meshkov instabilities to the more general class of hydrodynamic instabilities driven by a time-dependent acceleration g(t) . Explicit analytic solutions for linear as well as nonlinear amplitudes are obtained for several g(t)'s by solving a Schroedinger-like equation d{sup 2}{eta}/dt{sup 2} - g(t)kA{eta} = 0 where A is the Atwood number and k is the wavenumber of the perturbation amplitude {eta}(t). In our model a simple transformation k {yields} k{sub L} and A {yields} A{sub L} connects the linear to the nonlinear amplitudes: {eta}{sup nonlinear} (k,A) {approx} (1/k{sub L})ln{eta}{sup linear} (k{sub L}, A{sub L}). The model is found to be in very good agreement with direct numerical simulations. Bubble amplitudes for a variety of accelerations are seen to scale with s defined by s = {integral} {radical}g(t)dt, while spike amplitudes prefer scaling with displacement {Delta}x = {integral}[{integral}g(t)dt]dt
Recommended from our members
Limitations and Failures of the Layzer Model
We report several limitations and failure modes of the recently expanded Layzer model for hydrodynamic instabilities. The failures occur for large initial amplitudes, for stable accelerations, and for spikes in two-fluid systems
Exclusive W + photon production in proton-antiproton collisions I: general formalism
We present a detailed computation of the fully exclusive cross section of p +
antip --> W + photon + X with X = 0 and 1 jet in the framework of the
factorization theorem and dimensional regularization. Order alpha-strong and
photon bremsstrahlung contributions are discussed in the MS-bar mass
factorization scheme. The resulting expressions are ready to be implemented
numerically using Monte Carlo techniques to compute single and double
differential cross sections and correlations between outgoing pairs of
particles.Comment: ITP-SB-93-72, 40 pages, LateX. 3*4 figures in separate file.
([email protected]) ([email protected]
Simple model for linear and nonlinear mixing at unstable fluid interfaces with variable acceleration
Incorporating next-to-leading order matrix elements for hadronic diboson production in showering event generators
A method for incorporating information from next-to-leading order QCD matrix
elements for hadronic diboson production into showering event generators is
presented. In the hard central region (high jet transverse momentum) where
perturbative QCD is reliable, events are sampled according to the first order
tree level matrix element. In the soft and collinear regions next-to-leading
order corrections are approximated by calculating the differential cross
section across the phase space accessible to the parton shower using the first
order (virtual graphs included) matrix element. The parton shower then provides
an all-orders exclusive description of parton emissions. Events generated in
this way provide a physical result across the entire jet transverse momentum
spectrum, have next-to-leading order normalization everywhere, and have
positive definite event weights. The method is generalizable without
modification to any color singlet production process.Comment: 13 pages, 9 figure
Amplitude Zeros in Production
We demonstrate that the Standard Model amplitude for at the Born-level exhibits an approximate zero located at
at
high energies, where the () are the left-handed couplings
of the -boson to fermions and is the center of mass scattering
angle of the -boson. The approximate zero is the combined result of an exact
zero in the dominant helicity amplitudes and strong gauge
cancelations in the remaining amplitudes. For non-standard couplings
these cancelations no longer occur and the approximate amplitude zero is
eliminated.Comment: 11 pages, 4 figures submitted separately as uuencoded tar-ed
postscript files, FSU-HEP-940307, UCD-94-
Recommended from our members
The KL Mix Model Applied to Directly Driven Capsules on the Omega Laser
The coefficients of the KL mix model were set by Dimonte to match RT and RM instabilities as measured on the Linear Electric Motor (LEM). The KL mix model has been applied to directly-driven capsule implosions with a variety of laser energies, ablator materials, ablator thicknesses and convergence ratios. The KL calculations nearly match the observed Y{sub DD}, Y{sub DT}, Y{sub P}, T{sub ion} and implosion times for many (but not all) capsules
Density Matrix Kinetic Equation Describing a Passage of Fast Atomic Systems Through Matter
The quantum-mechanical consideration of a passage of fast dimesoatoms through
matter is given. A set of quantum-kinetic equations for the density matrix
elements describing their internal state evolution is derived. It is shown that
probabilistic description of internal dynamics of hydrogen-like atoms is
impossible even at sufficiently low energies because of the ``accidental''
degeneracy of their energy levels.Comment: 12 pages, LATEX, submitted to J. Phys.
- …