41 research outputs found

    Recombinant snakebite antivenoms: A cost-competitive solution to a neglected tropical disease?

    Get PDF
    Snakebite envenoming is a major public health burden in tropical parts of the developing world. In sub-Saharan Africa, neglect has led to a scarcity of antivenoms threatening the lives and limbs of snakebite victims. Technological advances within antivenom are warranted, but should be evaluated not only on their possible therapeutic impact, but also on their cost-competitiveness. Recombinant antivenoms based on oligoclonal mixtures of human IgG antibodies produced by CHO cell cultivation may be the key to obtaining better snakebite envenoming therapies. Based on industry data, the cost of treatment for a snakebite envenoming with a recombinant antivenom is estimated to be in the range USD 60-250 for the Final Drug Product. One of the effective antivenoms (SAIMR Snake Polyvalent Antivenom from the South African Vaccine Producers) currently on the market has been reported to have a wholesale price of USD 640 per treatment for an average snakebite. Recombinant antivenoms may therefore in the future be a cost-competitive alternative to existing serum-based antivenoms

    A new view of responses to first-time barefoot running.

    Get PDF
    We examined acute alterations in gait and oxygen cost from shod-to-barefoot running in habitually-shod well-trained runners with no prior experience of running barefoot. Thirteen runners completed six-minute treadmill runs shod and barefoot on separate days at a mean speed of 12.5 km·h-1. Steady-state oxygen cost in the final minute was recorded. Kinematic data were captured from 30-consecutive strides. Mean differences between conditions were estimated with 90% confidence intervals. When barefoot, stride length and ground-contact time decreased while stride rate increased. Leg-and vertical stiffness and ankle-mid-stance dorsi-flexion angle increased when barefoot while horizontal distance between point of contact and the hip decreased. Mean oxygen cost decreased in barefoot compared to shod running (90% CI -11% to -3%) and was related to change in ankle angle and point-of-contact distance, though individual variability was high (-19% to +8%). The results suggest that removal of shoes produces an alteration in running gait and a potentially-practically-beneficial reduction in mean oxygen cost of running in trained-habitually-shod runners new to running barefoot. However, high variability suggests an element of skill in adapting to the novel task and that caution be exercised in assuming the mean response applies to all runners

    Epitopic Profiling of Antibody Response against Neurotoxins from the Black Mamba (<i>Dendroaspis polylepis</i>)

    Get PDF
    The black mamba (Dendroaspis Polylepis) is among the most dangerous snakes in the world, with a venom dominated by three-finger toxins and dendrotoxins. Among the three-finger toxins, the α-neurotoxins (α-NT) are the most important, and these are conserved between snake species. Cross-reactivity between threefinger toxins is known to occur, and understanding this phenomenon in depth may help guide future design of antivenoms to obtain optimal specificity against medically important toxins from different snake species. Using a bioinformatic approach, we investigated the cross-reactivity be- tween three-finger toxins for a rabbit antiserum raised against short neuro- toxin 1 from D. polylepis (SN1-DP).<br/

    Biotechnological Trends in Spider and Scorpion Antivenom Development

    Get PDF
    Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology
    corecore