18 research outputs found

    糖尿病における血栓症とimmunothrombosis制御異常に関する研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 門脇 孝, 東京大学講師 大久保 洋平, 東京大学講師 鈴木 亮, 東京大学センター長 中島 勧, 東京大学准教授 神田 浩子University of Tokyo(東京大学

    Study of assessment of knowledge and understanding for coping with sick days among patients with diabetes in community pharmacy: a cluster randomized controlled trial (SAKURA trial)

    Get PDF
    [Background] Awareness regarding coping with sick days among patients with diabetes is limited. Thus, we evaluated the effectiveness of sick-day education by community pharmacists among patients with type 2 diabetes (T2D) using sick-day educational materials (sick-day cards). [Methods] A cluster randomized controlled trial was conducted. Pharmacists in the intervention group educated patients with T2D on coping with sick days (adjusting medication dosage and seeking medical advice) using sick-day cards compared with the usual counseling. Differences in questionnaire scores (“Anxiety”, “Intention”, “Attitude”, and “Knowledge” about sick days) before and after the intervention were compared between the groups. [Results] Overall, 318 patients with T2D (intervention, 119; control, 199) participated in this study, and 270 (intervention, 92; control, 178) patients were examined. There were no significant differences in “Anxiety”, “Intention”, or “Attitude” scores between the two groups, but “Knowledge” scores improved in the intervention group. For all intervention groups (92/92), a physician reviewed and approved medication and adjustment doses for sick days on the cards. [Conclusions] According to patients’ responses, sick-day education using teaching materials improved patient knowledge. This may help patients and their caregivers cope with sick days appropriately through medication dose adjustment and fluid intake. Research registration number: UMIN000043161 (February 1, 2021), https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr.cgifunction=brows&action=brows&recptno=R000048124&type=summary&language=

    A Novel High-Throughput Screening Method for a Human Multicentric Osteosarcoma-Specific Antibody and Biomarker Using a Phage Display-Derived Monoclonal Antibody

    No full text
    Osteosarcoma is a malignant tumor that produces neoplastic bone or osteoid osteoma. In human multicentric osteosarcoma (HMOS), a unique variant of human osteosarcoma (HOS), multiple bone lesions occur simultaneously or asynchronously before lung metastasis. HMOS is associated with an extremely poor prognosis, and effective treatment options are lacking. Using the proteins in our previously generated HMOS cell lines as antigens, we generated antibodies using a human antibody phage library. We obtained antibody clones recognizing 95 independent antigens and developed a fluorescence probe-based enzyme-linked immunosorbent assay (ELISA) technique capable of evaluating the reactivity of these antibodies by fluorescence intensity, allowing simple, rapid, and high-throughput selection of antibody clones. These results were highly correlated with those using flow cytometry. Subsequently, the HMOS cell lysate was incubated with the antibody, the antigen–antibody complex was recovered with magnetic beads, and the protein bands from electrophoresis were analyzed using liquid chromatography-mass spectrometry (LC/MS). CAVIN1/polymerase I transcript release factor was specifically detected in the HMOS cells. In conclusion, we found via a novel high-throughput screening method that CAVIN1/PTRF is an HMOS-specific cell membrane biomarker and an antigen capable of producing human antibodies. In the future, antibody–drug conjugate targeting of these specific proteins may be promising for clinical applications

    Double-stranded RNA sequencing reveals distinct riboviruses associated with thermoacidophilic bacteria from hot springs in Japan

    No full text
    International audienceMetatranscriptome sequencing expanded the known diversity of the bacterial RNA virome, suggesting that additional riboviruses infecting bacterial hosts remain to be discovered. Here we employed doublestranded RNA sequencing to recover complete genome sequences of two ribovirus groups from acidic hot springs in Japan. One group, denoted hot spring riboviruses (HsRV), consists of viruses with distinct RNA-directed RNA polymerases (RdRPs) that seem to be intermediates between typical ribovirus RdRPs and viral reverse transcriptases. This group forms a distinct phylum, Artimaviricota, or even kingdom within the realm Riboviria. We identified viruses encoding HsRV-like RdRPs in marine water, river sediments and salt marshes, indicating that this group is widespread beyond extreme ecosystems. The second group, denoted hot spring partiti-like viruses (HsPV), forms a distinct branch within the family Partitiviridae. The genome architectures of HsRV and HsPV and their identification in bacteria-dominated habitats suggest that these viruses infect thermoacidophilic bacteria

    Lactoferrin Suppresses Neutrophil Extracellular Traps Release in Inflammation

    Get PDF
    Neutrophils are central players in the innate immune system. They generate neutrophil extracellular traps (NETs), which protect against invading pathogens but are also associated with the development of autoimmune and/or inflammatory diseases and thrombosis. Here, we report that lactoferrin, one of the components of NETs, translocated from the cytoplasm to the plasma membrane and markedly suppressed NETs release. Furthermore, exogenous lactoferrin shrunk the chromatin fibers found in released NETs, without affecting the generation of oxygen radicals, but this failed after chemical removal of the positive charge of lactoferrin, suggesting that charge-charge interactions between lactoferrin and NETs were required for this function. In a model of immune complex-induced NET formation in vivo, intravenous lactoferrin injection markedly reduced the extent of NET formation. These observations suggest that lactoferrin serves as an intrinsic inhibitor of NETs release into the circulation. Thus, lactoferrin may represent a therapeutic lead for controlling NETs release in autoimmune and/or inflammatory diseases

    Group A Streptococcus establishes pharynx infection by degrading the deoxyribonucleic acid of neutrophil extracellular traps

    No full text
    Abstract Group A Streptococcus (GAS) secretes deoxyribonucleases and evades neutrophil extracellular killing by degrading neutrophil extracellular traps (NETs). However, limited information is currently available on the interaction between GAS and NETs in the pathogenicity of GAS pharyngitis. In this study, we modified a mouse model of GAS pharyngitis and revealed an essential role for DNase in this model. After intranasal infection, the nasal mucosa was markedly damaged near the nasal cavity, at which GAS was surrounded by neutrophils. When neutrophils were depleted from mice, GAS colonization and damage to the nasal mucosa were significantly decreased. Furthermore, mice infected with deoxyribonuclease knockout GAS mutants (∆spd, ∆endA, and ∆sdaD2) survived significantly better than those infected with wild-type GAS. In addition, the supernatants of digested NETs enhanced GAS-induced cell death in vitro. Collectively, these results indicate that NET degradation products may contribute to the establishment of pharyngeal infection caused by GAS
    corecore