10 research outputs found

    Principle of Maximum Entropy Applied to Rayleigh-B\'enard Convection

    Full text link
    A statistical-mechanical investigation is performed on Rayleigh-B\'enard convection of a dilute classical gas starting from the Boltzmann equation. We first present a microscopic derivation of basic hydrodynamic equations and an expression of entropy appropriate for the convection. This includes an alternative justification for the Oberbeck-Boussinesq approximation. We then calculate entropy change through the convective transition choosing mechanical quantities as independent variables. Above the critical Rayleigh number, the system is found to evolve from the heat-conducting uniform state towards the convective roll state with monotonic increase of entropy on the average. Thus, the principle of maximum entropy proposed for nonequilibrium steady states in a preceding paper is indeed obeyed in this prototype example. The principle also provides a natural explanation for the enhancement of the Nusselt number in convection.Comment: 13 pages, 4 figures; typos corrected; Eq. (66a) corrected to remove a double counting for k=0k_{\perp}=0; Figs. 1-4 replace

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Interaction Between Convection and Pulsation

    Get PDF

    Natural convection inside a horizontal tube for small Grashof numbers

    No full text
    corecore