1 research outputs found
On residualizing homomorphisms preserving quasiconvexity
H is called a G-subgroup of a hyperbolic group G if for any finite subset M G there exists a homomorphism from G onto a non-elementary hyperbolic group G_1 that is surjective on H and injective on M. In his paper in 1993 A. Ol'shanskii gave a description of all G-subgroups in any given non-elementary hyperbolic group G. Here we show that for the same class of G-subgroups the finiteness assumption on M (under certain natural conditions) can be replaced by an assumption of quasiconvexity