273 research outputs found

    Quasiparticle relaxation dynamics in spin-density-wave and superconducting SmFeAsO_{1-x}F_{x} single crystals

    Full text link
    We investigate the quasiparticle relaxation and low-energy electronic structure in undoped SmFeAsO and near-optimally doped SmFeAsO_{0.8}F_{0.2} single crystals - exhibiting spin-density wave (SDW) ordering and superconductivity respectively - using pump-probe femtosecond spectroscopy. In the undoped single crystals a single relaxation process is observed, showing a remarkable critical slowing down of the QP relaxation dynamics at the SDW transition temperature T_{SDW}\simeq125{K}. In the superconducting (SC) crystals multiple relaxation processes are present, with distinct SC state quasiparticle recombination dynamics exhibiting a BCS-like T-dependent superconducting gap, and a pseudogap (PG)-like feature with an onset above 180K indicating the existence of a pseudogap of magnitude 2\Delta_{\mathrm{PG}}\simeq120 meV above T_{\mathrm{c}}. From the pump-photon energy dependence we conclude that the SC state and PG relaxation channels are independent, implying the presence of two separate electronic subsystems. We discuss the data in terms of spatial inhomogeneity and multi-band scenarios, finding that the latter is more consistent with the present data.Comment: Replaced by the correct versio

    Normal state bottleneck and nematic fluctuations from femtosecond quasi-particle relaxation dynamics in Sm(Fe,Co)AsO

    Full text link
    We investigate temperature and fluence dependent dynamics of the photoexcited quasi-particle relaxation and low-energy electronic structure in electron-doped 1111-structure Sm(Fe_{0.93}Co_{0.07})AsO single crystal. We find that the behavior is qualitatively identical to the 122-structure Ba(Fe,Co)_{2}As_{2} including the presence of a normal state pseudogap and a marked 2-fold symmetry breaking in the tetragonal phase that we relate to the electronic nematicity. The 2-fold symmetry breaking appears to be a general feature of the electron doped iron pnictides

    Femtosecond data storage, processing and search using collective excitations of a macroscopic quantum state

    Full text link
    An ultrafast paralell data processor is described in which amplitude mode excitations of a charge density wave (CDW) are used to encode data on the surface of a 1-T TaS_2 crystal. The data are written, manipulated and read using parallel femtosecond laser pulse beams, and the operation of a database search algorithm is demonstrated on a 2-element array.Comment: To be published in App. Phys. Let

    Doping dependence of femtosecond quasi-particle relaxation dynamics in Ba(Fe,Co)_2As_2 single crystals: possible evidence for normal state nematic fluctuations

    Full text link
    We systematically investigate the photoexcited (PE) quasi-particle (QP) relaxation and low-energy electronic structure in electron doped Ba(Fe_{1-x}Co_{x})_{2}As_{2} single crystals as a function of Co doping, 0<= x <=0.11. The evolution of the photoinduced reflectivity transients with xx proceeds with no abrupt changes. In the orthorhombic spin-density-wave (SDW) state a bottleneck associated with a partial charge-gap opening is detected, similar to previous results in different SDW iron-pnictides. The relative charge gap magnitude decreases with increasing x. In the superconducting (SC) state an additional relaxational component appears due to a partial (or complete) destruction of the SC state proceeding on a sub-0.5-picosecond timescale. From the SC component saturation behavior the optical SC-state destruction energy, U_p/k_B=0.3 K/Fe, is determined near the optimal doping. The subsequent relatively slow recovery of the SC state indicates clean SC gaps. The T-dependence of the transient reflectivity amplitude in the normal state is consistent with the presence of a pseudogap in the QP density of states. The polarization anisotropy of the transients suggests that the pseudogap-like behavior might be associated with a broken point symmetry resulting from nematic electronic fluctuations persisting up to T~200 K at any x. The second moment of the Eliashberg function, obtained from the relaxation rate in the metallic state at higher temperatures, indicates a moderate electron phonon coupling, lambda <~0.3, that decreases with increasing doping
    • …
    corecore