8 research outputs found

    Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys

    Get PDF
    Since ancient times, honey has been appreciated not only for its sensorial traits, but also for the observed effects in rejuvenation and treatment against several bad health conditions, when used externally or internally, along with other beehive products, such as pollen, propolis and royal jelly. Today, it is known that such effects are generated by compounds bearing antimicrobial, anti-inflammatory, and antioxidative features (enzymes, polyphenolic molecules). The purpose of this study was to assess the total phenolic and flavonoid contents of 28 samples of Romanian raw monofloral honey (acacia; linden; rapeseed, sunflower and mint), and to establish their correlations with several qualitative parameters. Pearson’s test revealed a strong positive correlation between total phenolic content and total flavonoids (r = 0.76) and color intensity (r = 0.72). For total flavonoid content, correlations were strongly positive with color intensity (r = 0.81), ash content (r = 0.76) and electrical conductivity (r = 0.73). The relevant levels of polyphenols and flavonoids identified in the analyzed honey types demonstrate its antioxidant potential, with essential nutritional and sanogenic features in human nutrition

    Diagnostic Challenges and Management Update in Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis is a chronic, systemic inflammatory disease, with certain evidence of multiple factors involved, but also with the strong autoimmune component, leading to a high potential for disability, through synovial inflammation and joint destruction. Diagnostic methods and management possibilities have recently improved, thus leading to a better outcome, based on the treat to target recommendation. Although biologic agents represent efficient therapeutic agents, in the last few years, the advances in understanding the mediators involved in rheumatoid arthritis pathogenesis have provided new targeted therapies, represented by small molecule inhibitors against the Janus kinases that contribute in the signaling pathways of various cytokine receptors

    Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys

    No full text
    Since ancient times, honey has been appreciated not only for its sensorial traits, but also for the observed effects in rejuvenation and treatment against several bad health conditions, when used externally or internally, along with other beehive products, such as pollen, propolis and royal jelly. Today, it is known that such effects are generated by compounds bearing antimicrobial, anti-inflammatory, and antioxidative features (enzymes, polyphenolic molecules). The purpose of this study was to assess the total phenolic and flavonoid contents of 28 samples of Romanian raw monofloral honey (acacia; linden; rapeseed, sunflower and mint), and to establish their correlations with several qualitative parameters. Pearson’s test revealed a strong positive correlation between total phenolic content and total flavonoids (r = 0.76) and color intensity (r = 0.72). For total flavonoid content, correlations were strongly positive with color intensity (r = 0.81), ash content (r = 0.76) and electrical conductivity (r = 0.73). The relevant levels of polyphenols and flavonoids identified in the analyzed honey types demonstrate its antioxidant potential, with essential nutritional and sanogenic features in human nutrition

    Thorium Removal, Recovery and Recycling: A Membrane Challenge for Urban Mining

    No full text
    Although only a slightly radioactive element, thorium is considered extremely toxic because its various species, which reach the environment, can constitute an important problem for the health of the population. The present paper aims to expand the possibilities of using membrane processes in the removal, recovery and recycling of thorium from industrial residues reaching municipal waste-processing platforms. The paper includes a short introduction on the interest shown in this element, a weak radioactive metal, followed by highlighting some common (domestic) uses. In a distinct but concise section, the bio-medical impact of thorium is presented. The classic technologies for obtaining thorium are concentrated in a single schema, and the speciation of thorium is presented with an emphasis on the formation of hydroxo-complexes and complexes with common organic reagents. The determination of thorium is highlighted on the basis of its radioactivity, but especially through methods that call for extraction followed by an established electrochemical, spectral or chromatographic method. Membrane processes are presented based on the electrochemical potential difference, including barro-membrane processes, electrodialysis, liquid membranes and hybrid processes. A separate sub-chapter is devoted to proposals and recommendations for the use of membranes in order to achieve some progress in urban mining for the valorization of thorium

    Recent Progress in Radon Metrology at IFIN-HH, Romania

    No full text
    The practical implementation of the European Council Directive no. 2013/59/EURATOM in Romania requires reliable indoor measurements of the radon (222Rn) activity concentration in air. In Romania, several Testing Laboratories were designated for radon activity and/or radon activity concentration in air measurements by the Romanian National Commission for Nuclear Activities Control (CNCAN). The calibration of the instruments used for indoor radon activity concentration measurements is very important. IFIN-HH, through its Ionizing Radiation Metrology Laboratory (LMRI), performed advanced research in the field of radon metrology, using radon standard sources prepared by LMRI, its radon chamber facility and a new reference radon monitor. The most recent results are described in this article. The radon chamber facility from IFIN-HH was technically improved, and new equipment and methods were set up and tested in order to provide new calibration services for customers. Additionally, calibration of the radon monitors was performed, as well as of the systems with solid-state nuclear track detectors, used for radon in air activity concentration measurements. IFIN-HH/LMRI obtained the CNCAN designation as Calibration Laboratory for installations measuring the radon activity concentration in air

    Transport and Separation of the Silver Ion with <i>n</i>–decanol Liquid Membranes Based on 10–undecylenic Acid, 10–undecen–1–ol and Magnetic Nanoparticles

    No full text
    This paper presents a transport and recovery of silver ions through bulk liquid membranes based on n–decanol using as carriers 10–undecylenic acid and 10–undecylenyl alcohol. The transport of silver ions across membranes has been studied in the presence of two types of magnetic oxide nanoparticles obtained by the electrochemical method with iron electrodes in the electrolyte with and without silver ions, which act as promoters of turbulence in the membrane. Separation of silver ions by bulk liquid membranes using 10–undecylenic acid and 10–undecylenyl alcohol as carriers were performed by comparison with lead ions. The configuration of the separation module has been specially designed for the chosen separation process. Convective-generating magnetic nanoparticles were characterized in terms of the morphological and structural points of view: scanning electron microscopy (SEM), high-resolution SEM (HR–SEM), energy dispersive spectroscopy analysis (EDAX), Fourier Transform InfraRed (FTIR) spectroscopy, thermal gravimetric analysis (TGA), differential scanning calorimetry and magnetization. The process performance (flux and selectivity) was tested were tested for silver ion transport and separation through n–decanol liquid membranes with selected carriers. Under the conditions of the optimized experimental results (pH = 7 of the source phase, pH = 1 of the receiving phase, flow rate of 30 mL/min for the source phase and 9 mL/min for the receiving phase, 150 rot/min agitation of magnetic nanoparticles) separation efficiencies of silver ions of over 90% were obtained for the transport of undecenoic acid and about 80% for undecylenyl alcohol

    Operational Limits of the Bulk Hybrid Liquid Membranes Based on Dispersion Systems

    No full text
    Liquid membranes usually have three main constructive variants: bulk liquid membranes (BLM), supported liquid membranes (SLM) and emulsion liquid membranes (ELM). Designing hybrid variants is very topical, with the main purpose of increasing the flow of substance through the membrane but also of improving the selectivity. This paper presents the operational limits of some kind of hybrid membrane constituted as a bulk liquid membrane (BLM), but which works by dispersing the aqueous source (SP) and receiving (RP) phases, with the membrane itself being a dispersion of nanoparticles in an organic solvent (NP–OSM). The approached operational parameters were the volume of phases of the hybrid membrane system, the thickness of the liquid membrane, the working temperature, the flow of aqueous phases, the droplet size of the aqueous phases dispersed across the membrane, the nature and concentration of nanoparticles in the membrane, the pH difference between the aqueous phases, the nature of the organic solvent, the salt concentration in the aqueous phases and the nature of transported chemical species. For this study, silver ion (SI) and p-nitrophenol (PNP) were chosen as transportable chemical species, the n-aliphatic alcohols (C6…C12) as membrane organic solvents, 10–undecenoic acid (UDAc) and 10-undecylenic alcohol (UDAl) as carriers and magnetic iron oxides as nanoparticles dispersed in the membrane phase. Under the experimentally established operating conditions, separation efficiencies of over 90% were obtained for both ionic and molecular chemical species (silver ions and p-nitrophenol). The results showed the possibility of increasing the flow of transported chemical species by almost 10 times for the silver ion and approximately 100 times for p-nitrophenol, through the appropriate choice of operational parameters, but they also exposed their limits in relation to the stability of the membrane system

    MMP-13, VEGF, and Disease Activity in a Cohort of Rheumatoid Arthritis Patients

    No full text
    Identifying certain serum biomarkers associated with the degree of rheumatoid arthritis (RA) activity can provide us with a more accurate view of the evolution, prognosis, and future quality of life for these patients. Our aim was to analyze the presence and clinical use of matrix metalloproteinase-13 (MMP-13), along with vascular endothelial growth factor (VEGF) and well-known cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) for patients with RA. We also wanted to identify the possible correlations between MMP-13 and these serological markers, as well as their relationship with disease activity indices, quality of life, and ultrasonographic evaluation. For this purpose, we analyzed serum samples of 34 RA patients and 12 controls. In order to assess serum concentrations for MMP-13, VEGF, TNF-α, and IL-6, we used the enzyme-linked immunosorbent assay (ELISA) technique. Our results concluded that higher levels of MMP-13, VEGF, TNF-α, and IL-6 were present in the serum of RA patients compared to controls, with statistical significance. We furthermore identified moderately positive correlations between VEGF, MMP-13, and disease activity indices, as well as with the ultrasound findings. We also observed that VEGF had the best accuracy (97.80%), for differentiating patients with moderate disease activity. According to the data obtained in our study, that although MMP-13, TNF-α and C-reactive protein (CRP) have the same sensitivity (55.56%), MMP-13 has a better specificity (86.67%) in the diagnosis of patients with DAS28(4v) CRP values corresponding to moderate disease activity. Thus, MMP-13 can be used as a biomarker that can differentiate patients with moderate or low disease activity. VEGF and MMP-13 can be used as additional parameters, along with TNF-α and IL-6, that can provide the clinician a better picture of the inflammatory process, disease activity, and structural damage in patients with RA. Our data can certainly constitute a start point for future research and extended studies with multicenter involvement, to support the selection of individualized and accurate therapeutic management strategies for our patients
    corecore