11 research outputs found
Compressive properties of pristine and SiC-Te-added MgB 2 powders, green compacts and spark-plasma-sintered bulks
Pristine and (SiC+Te)-added MgB2 powders, green and spark plasma sintered (SPS) compacts were investigated from the viewpoint of quasi-static and dynamic (Split-Hopkinson Pressure Bar, SHPB) compressive mechanical properties The amount of the additive (SiC+Te) was selected to be the optimum one for maximization of the superconducting functional parameters. Pristine and added MgB2 show very similar compressive parameters (tan δ, fracture strength, Vickers hardness, others) and fragment size in the SHPB test. However, for the bulk SPSed samples the ratio of intergranular to transgranular fracturing changes, the first one being stronger in the added sample. This is reflected in the quasi-static KIC that is higher for the added sample. Despite this result, sintered samples are brittle and have roughly similar fragmentation behavior as for brittle engineering ceramics. In the fragmentation process, the composite nature of our samples should be considered with a special focus on MgB2 blocks (colonies) that show the major contribution to fracturing. The Glenn-Chudnovsky model of fracturing under dynamic load provides the closest values to our experimental fragment size data
Microwave and Terahertz Properties of Spark-Plasma-Sintered Zr<sub>0.8</sub>Sn<sub>0.2</sub>TiO<sub>4</sub> Ceramics
Zr0.8Sn0.2TiO3 (ZST) powders synthesized by solid-state reaction were subject to processing by spark plasma sintering (SPS). A single-phase ceramic with a high relative density of 95.7% and 99.6% was obtained for sintering temperatures of 1150 °C and 1200 °C, respectively, and for a dwell time of 3 min. In order to reduce the oxygen vacancies, as-sintered discs were annealed in air at 1000 °C. The dielectric loss of the annealed samples, expressed by the Q × f product, measured in the microwave (MW) domain, varied between 35 THz and 50 THz. The intrinsic losses (Q × f ~ 60 THz) were derived by using terahertz time-domain spectroscopy (THz-TDS)
Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu2S–ZnS–SnS2 Thin Films
Cu2ZnSnS4 (CZTS) is an economically and environmentally friendly alternative to other toxic and expensive materials used for photovoltaics, however, the variation in the composition during synthesis is often followed by the occurrence of the secondary binary and ternary crystalline phases. These phases produce changes in the optical absorption edge important in cell efficiency. We explore here the secondary phases that emerge in a combinatorial Cu2S–ZnS–SnS2 thin films library. Thin films with a composition gradient were prepared by simultaneous magnetron sputtering from three binary chalcogenide targets (Cu2S, SnS2 and ZnS). Then, the samples were crystallized by sulfurization annealing at 450 °C under argon flow. Their composition was measured by energy dispersive X-ray spectroscopy (EDX), whereas the structural and optical properties were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and optical transmission measurements. As already known, we found that annealing in a sulfur environment is beneficial, increasing the crystallinity of the samples. Raman spectroscopy revealed the presence of CZTS in all the samples from the library. Secondary crystalline phases such as SnS2, ZnS and Cu–S are also formed in the samples depending on their proximity to the binary chalcogenide targets. The formation of ZnS or Cu–S strongly correlates with the Zn/Sn and Cu/Zn ratio of the total sample composition. The presence of these phases produces a variation in the bandgap between 1.41 eV and 1.68 eV. This study reveals that as we go further away from CZTS in the composition space, in the quasi-ternary Cu2S–ZnS–SnS2 diagram, secondary crystalline phases arise and increase in number, whereas the bandgap takes values outside the optimum range for photovoltaic applications
New Chalcogenide Glass-Ceramics Based on Ge-Zn-Se for IR Applications
International audienceThe consumer market requests infrared (IR) optical components, made of relatively abundant and environmentally friendly materials, to be integrated or attached to smartphones. For this purpose, three new chalcogenides samples, namely Ge23.3Zn30.0Se46.7 (d_GZSe-1), Ge26.7Zn20.0Se53.3 (d_GZSe-2) and Ba4.0Ge12.0Zn17.0Se59.0I8.0 (d_GZSe-3) were obtained by mechanical alloying and processed by spark plasma sintering into dense bulk disks. Obtaining a completely amorphous and homogeneous material proved to be difficult. d_GZSe-2 and d_GZSe-3 are glass-ceramics with the amount of the amorphous phase being 19.7 and 51.4 wt. %, while d_GZSe-1 is fully polycrystalline. Doping with barium and iodine preserves the amorphous phase formed by milling and lowers the sintering temperature from 350 degrees C to 200 degrees C. The main crystalline phase in all of the prepared samples is cubic ZnSe or cubic Zn0.5Ge0.25Se, while in d_GZSe-3 the amorphous phase contains GeSe4 clusters. The color of the first two sintered samples is black (the band gap values are 0.42 and 0.79 eV), while d_GZSe-3 is red (E-g is 1.37 eV) and is transparent in IR domain. These results are promising for future research in IR materials and thin films
Investigation of flux jumps during Pulsed Field Magnetization in various MgB2 bulks
Invited PosterInternational audienceBulk MgB2 superconductors have a promising potential as trapped field magnets, and have a number of attractive properties, such as being rare-earth-free and a low density. However, these superconducting materials have magneto-thermal instabilities visible through flux jumps. These flux jumps occur during conventional magnetization measurements, even at low sweep rates below 10 T/min. In this paper, we investigated the influence of different additions on the flux jumps during Pulsed Field Magnetization (PFM) of MgB2 bulk samples obtained by spark plasma sintering (SPS). PFM experiments are carried out on MgB2 pellets (20 mm diameter and 3.5 mm height) cooled down to an initial temperature of 10 K, 15 K and 20 K. Finally, we discuss the potential of the additions to the MgB2 material in order to avoid flux jumps and increase the resulting trapped field capabilities
Passive magnetic shielding by machinable MgB2 bulks: measurements and numerical simulations
We report on a combined experimental and modelling approach towards the design and fabrication of efficient bulk shields for low-frequency magnetic fields. To this aim, MgB2 is a promising material when its growing technique allows the fabrication of suitably shaped products and a realistic numerical modelling can be exploited to guide the shield design. Here, we report the shielding properties of an MgB2 tube grown by a novel technique that produces fully machinable bulks, which can match specific shape requirements. Despite a height/radius aspect ratio of only 1.75, shielding factors higher than 175 and 55 were measured at temperature T=20 K and in axially-applied magnetic fields μ0Happl=0.1 and 1.0 T, respectively, by means of cryogenic Hall probes placed on the tube’s axis. The magnetic behaviour of the superconductor was then modelled as follows: first we used a two-step procedure to reconstruct the macroscopic critical current density dependence on magnetic field, Jc(B), at different temperatures from the local magnetic induction cycles measured by the Hall probes. Next, using these Jc(B) characteristics, by means of finite-element calculations we reproduced the experimental cycles remarkably well at all the investigated temperatures and positions along the tube’s axis. Finally, this validated model was exploited to study the influence both of the tube’s wall thickness and of a cap addition on the shield performance. In the latter case, assuming the working temperature of 25 K, shielding factors of 105 and 104 are predicted in axial applied fields μ0Happl=0.1 and 1.0 T, respectively
High magnetic shielding properties of an MgB2 cup obtained by machining a spark-plasma-sintered bulk cylinder
Superconductors are key materials for shielding quasi-static magneticfields. In this work, we investigated the shielding properties of an MgB2 cup-shaped shield with small aspect-ratio of height/outer radius. Shape and aspect-ratio were chosen in order to address practical requirements of both high shielding factors (SFs) and space-saving solutions. To obtain large critical current densities (Jc), which are crucial for achieving high magnetic-mitigation performance, a high-purity starting MgB2 powder was selected. Then, processing of the starting MgB2 powder into high density bulks was performed by spark plasma sintering. The as-obtained material is fullymachinable and was shaped into a cup-shield. Assessment of the material by scaling of the pinning force showed a non-trivial pinning behaviour. The MgB2 powder selection was decisive in enlarging the range of external fields where efficient shielding occurs. The shield’s properties were measured in both axial- and transverse-field configurations using Hall probes. Despite a height/outer radius aspect ratio of 2.2, shielding factors higher than 10^4 at T = 20 K up to a threshold field of 1.8 T were measured in axial-field geometry at a distance of 1 mm from the closed extremity of the cup, while SFs > 10^2 occurred in the inner half of the cup. As expected, this threshold field decreased with increased temperature, but SFs still exceeding the above mentioned values were found up to 0.35 T at 35 K. The shield’s shape limits the SF values achievable in transverse-field configuration. Nevertheless, the in-field Jc of the sample supported SFs over 40 at T = 20 K up to a field of 0.8 T, 1 mm away from the cup closure
Screening of magnetic fields by superconducting and hybrid shields with a circular cross-section
The use of superconducting (SC) materials is crucial for shielding quasi-static magnetic fields. However, the need for space-saving solutions with high shielding performance requires the development of a three-dimensional (3D) modelling procedure capable of predicting the screening properties for different orientations of the applied field. In this paper, we use a 3D numerical model based on a vector potential formulation to investigate the shielding ability of SC screens with cylindrical symmetry and a height/diameter aspect ratio close to unity, without and with the superimposition of a ferromagnetic (FM) circular shell. The chosen materials were MgB2 and soft iron. First, the outcomes of the calculations were compared with the experimental data obtained with different shielding arrangements, achieving a notable
agreement in both axial field (AF) and transverse field (TF) orientations. Then, we used this validated modelling approach to investigate how the magnetic mitigation properties of a cup-shaped SC bulk can be improved by the superimposition of a coaxial FM cup. Calculations
highlighted that the FM addition is very efficient in enhancing the shielding factors (SFs) in the TF orientation. Assuming a working temperature of 30 K and using a layout with the FM cup protruding over the SC one, SFs up to eight times greater than those with a single SC cup were attained at applied field up to 0.15 T, reaching values equal to or higher than 102 in the inner half of the shield. In the AF orientation, the addition of the same FM cup incurs a modest worsening at low fields, but at the same time it widens the applied field range where SF â©ľ 10^4 occurs near the close extremity of the shield to over 1 T
Influence of the Carbo-Chromization Process on the Microstructural, Hardness, and Corrosion Properties of 316L Sintered Stainless Steel
We report on the changes on the microstructural, hardness, and corrosion properties induced by carbo-chromization of 316L stainless steel prepared by Spark Plasma Sintering technique. The thermo-chemical treatments have been performed using pack cementation. The carburizing and chromization were carried out between 1153 K (880 A degrees C)/4 h to 1253 K (980 A degrees C)/12 h and 1223 K (950 A degrees C)/6 h to 1273 K (1000 A degrees C)/12 h in a solid powder mixture of charcoal/BaCO3 and ferrochromium/alumina/NH4Cl, respectively. The obtained layers were investigated using X-ray and electron diffraction, optical and scanning electron microscopies, Vickers micro-hardness, and potentiodynamic measurements. The thickness of the carbo-chromized layer ranges between 300 and 500 mu m. Besides the host gamma-phase, the layers are mainly constituted of carbides (Fe7C3, Cr23C6, Cr7C3, and Fe3C) and traces of alpha'-martensite. The average hardness values decrease smoothly from 650 HV at the sample surface down to 200 HV at the center of the sample. The potentiodynamic tests revealed that the carbo-chromized samples have smaller corrosion resistance with respect to the untreated material. For strong chromization regimes, the corrosion rate is increased by a factor of four with respect to that of the untreated material, while the micro-hardness of the layer is three times larger. Such materials are suited to be used in environments where good corrosion resistance and wear properties are required