3 research outputs found

    Characterisation of a Novel Complex Concentrated Alloy for Marine Applications

    No full text
    Complex concentrated alloys (CCAs) are a new family of materials with near equimolar compositions that fluctuate depending on the characteristics and destination of the material. CCAs expand the compositional limits of the traditional alloys, displaying new pathways in material design. A novel light density Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy was studied to determine the structural particularities and related properties. The alloy was prepared in an induction furnace and then annealed under a protective atmosphere. The resulted specimens were analysed by chemical, structural, mechanical, and corrosion resistance. The structural analyses revealed a predominant FCC and BCC solid solution structure. The alloy produced a compression strength of 500–600 MPa, comparable with conventional aluminium alloys. The corrosion resistance in 3.5% NaCl solution was 0.3424 mm/year for as-cast and 0.1972 mm/year for heat-treated alloy, superior to steel, making the alloy a good candidate for marine applications

    Influence of Heat Treatment on the Corrosion Behavior of Electrodeposited CoCrFeMnNi High-Entropy Alloy Thin Films

    No full text
    In this paper, we investigate what effects heat treatment can have on potentiodynamically electrodeposited high-entropy thin film (HEA) CoCrFeMnNi alloys. We focused our study on the corrosion resistance in synthetic seawater, corroborated with the structure and microstructure of these thin films. Thin films of HEA alloys were deposited on a copper foil substrate, using an electrolyte based on the organic system dimethyl-sulfoxide (DMSO-(CH3)2SO)-acetonitrile (AN-CH3CN) (in a volume ratio of 4:1), which contains LiClO4 as electrolyte support and chloride salts of CoCl2, CrCl3 × 6H2O, FeCl2 × 4H2O, MnCl2 × 4H2O and NiCl2 × 6H2O. Using MatCalc PC software, based on the CALPHAD method, the structure and characteristics of the HEA system were investigated, and thermodynamic and kinetic criteria were calculated. The modeling process generated in the body-centered-cubic (BCC) or face-centered-cubic (FCC) structures a series of optimal compositions that are appropriate to be used in anticorrosive and tribological applications in a marine environment. Electrochemical measurements were carried out in an aerated artificial seawater solution at ambient temperature. In the experimental media, HEA thin films proved to have good corrosion resistance and were even better than the copper substrate. Corrosion resistance was improved after heat treatment, as shown by polarization and EIS tests. The structure and microstructure of HEA thin films before and after corrosion in artificial seawater were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The XRD data showed no significant changes in the structure of HEA heat-treated thin films after the corrosion in saline media. The data obtained by polarization and ESI are supported by results from SEM-EDS. This complex study reveals that, for HEA thin films, heat treatment leads to an increase in corrosion resistance. So, this finding suggests that thermal annealing is an appropriate method for improving the corrosion performance of HEA thin films

    Modeling and Characterization of Complex Concentrated Alloys with Reduced Content of Critical Raw Materials

    No full text
    The continuous development of society has increased the demand for critical raw materials (CRMs) by using them in different industrial applications. Since 2010, the European Commission has compiled a list of CRMs and potential consumption scenarios with significant economic and environmental impacts. Various efforts were made to reduce or replace the CRM content used in the obtaining process of high-performance materials. Complex concentrated alloys (CCAs) are an innovative solution due to their multitude of attractive characteristics, which make them suitable to be used in a wide range of industrial applications. In order to demonstrate their efficiency in use, materials should have improved recyclability, good mechanical or biocompatible properties, and/or oxidation resistance, according to their destination. In order to predict the formation of solid solutions in CCAs and provide the optimal compositions, thermodynamic and kinetic simulations were performed. The selected compositions were formed in an induction furnace and then structurally characterized with different techniques. The empirical results indicate that the obtained CCAs are suitable to be used in advanced applications, providing original contributions, both in terms of scientific and technological fields, which can open new perspectives for the selection, design, and development of new materials with reduced CRM contents
    corecore