2 research outputs found

    Development and Internal Validation of a New Prognostic Model Powered to Predict 28-Day All-Cause Mortality in ICU COVID-19 Patients—The COVID-SOFA Score

    No full text
    Background: The sequential organ failure assessment (SOFA) score has poor discriminative ability for death in severely or critically ill patients with Coronavirus disease 2019 (COVID-19) requiring intensive care unit (ICU) admission. Our aim was to create a new score powered to predict 28-day mortality. Methods: Retrospective, observational, bicentric cohort study including 425 patients with COVID-19 pneumonia, acute respiratory failure and SOFA score ≥ 2 requiring ICU admission for ≥72 h. Factors with independent predictive value for 28-day mortality were identified after stepwise Cox proportional hazards (PH) regression. Based on the regression coefficients, an equation was computed representing the COVID-SOFA score. Discriminative ability was tested using receiver operating characteristic (ROC) analysis, concordance statistics and precision-recall curves. This score was internally validated. Results: Median (Q1–Q3) age for the whole sample was 64 [55–72], with 290 (68.2%) of patients being male. The 28-day mortality was 54.58%. After stepwise Cox PH regression, age, neutrophil-to-lymphocyte ratio (NLR) and SOFA score remained in the final model. The following equation was computed: COVID-SOFA score = 10 × [0.037 × Age + 0.347 × ln(NLR) + 0.16 × SOFA]. Harrell’s C-index for the COVID-SOFA score was higher than the SOFA score alone for 28-day mortality (0.697 [95% CI; 0.662–0.731] versus 0.639 [95% CI: 0.605–0.672]). Subsequently, the prediction error rate was improved up to 16.06%. Area under the ROC (AUROC) was significantly higher for the COVID-SOFA score compared with the SOFA score for 28-day mortality: 0.796 [95% CI: 0.755–0.833] versus 0.699 [95% CI: 0.653–0.742, p < 0.001]. Better predictive value was observed with repeated measurement at 48 h after ICU admission. Conclusions: The COVID-SOFA score is better than the SOFA score alone for 28-day mortality prediction. Improvement in predictive value seen with measurements at 48 h after ICU admission suggests that the COVID-SOFA score can be used in a repetitive manner. External validation is required to support these results

    Dynamic Changes of the Neutrophil-to-Lymphocyte Ratio, Systemic Inflammation Index, and Derived Neutrophil-to-Lymphocyte Ratio Independently Predict Invasive Mechanical Ventilation Need and Death in Critically Ill COVID-19 Patients

    No full text
    Background: Hematological indices can predict disease severity, progression, and death in patients with coronavirus disease-19 (COVID-19). Objectives: To study the predictive value of the dynamic changes (first 48 h after ICU admission) of the following ratios: neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), monocyte-to-lymphocyte (MLR), systemic inflammation index (SII), and derived neutrophil-to-lymphocyte (dNLR) for invasive mechanical ventilation (IMV) need and death in critically ill COVID-19 patients. Methods: Observational, retrospective, and multicentric analysis on 272 patients with severe or critical COVID-19 from two tertiary centers. Hematological indices were adjusted for confounders through multivariate analysis using Cox regression. Results: Patients comprised 186 males and 86 females with no difference across groups (p > 0.05). ΔNLR > 2 had the best independent predictive value for IMV need (HR = 5.05 (95% CI, 3.06–8.33, p < 0.0001)), followed by ΔSII > 340 (HR = 3.56, 95% CI 2.21–5.74, p < 0.0001) and ΔdNLR > 1 (HR = 2.61, 95% CI 1.7–4.01, p < 0.0001). Death was also best predicted by an NLR > 11 (HR = 2.25, 95% CI: 1.31–3.86, p = 0.003) followed by dNLR > 6.93 (HR = 1.89, 95% CI: 1.2–2.98, p = 0.005) and SII > 3700 (HR = 1.68, 95% CI: 1.13–2.49, p = 0.01). Conclusions: Dynamic changes of NLR, SII, and dNLR independently predict IMV need and death in critically ill COVID-19 patients
    corecore