7 research outputs found

    Development of Dextran-Coated Magnetic Nanoparticles Loaded with Protocatechuic Acid for Vascular Inflammation Therapy

    Full text link
    Vascular inflammation plays a crucial role in the progression of various pathologies, including atherosclerosis (AS), and thus it has become an attractive therapeutic target. The protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, is endowed with anti-inflammatory activity, but its formulation into nanocarriers may increase its bioavailability. In this study, we developed and characterized dextran shell‒iron oxide core nanoparticles loaded with PCA (MNP-Dex/PCA) and assessed their cytotoxicity and anti-inflammatory potential on cells acting as key players in the onset and progression of AS, namely, endothelial cells (EC) and monocytes/macrophages. The results showed that MNP-Dex/PCA exert an anti-inflammatory activity at non-cytotoxic and therapeutically relevant concentrations of PCA (350 μM) as supported by the reduced levels of inflammatory molecules such as MCP-1, IL-1β, TNF-α, IL-6, and CCR2 in activated EC and M1-type macrophages and functional monocyte adhesion assay. The anti-inflammatory effect of MNP-Dex/PCA was associated with the reduction in the levels of ERK1/2 and p38-α mitogen-activated protein kinases (MAPKs) and NF-kB transcription factor. Our data support the further development of dextran shell-magnetic core nanoparticles as theranostic nanoparticles for guidance, imaging, and therapy of vascular inflammation using PCA or other anti-inflammatory compounds

    Bio-Responsive Carriers for Controlled Delivery of Doxorubicin to Cancer Cells

    Full text link
    The cellular internalization of drug carriers occurs via different endocytic pathways that ultimately involve the endosomes and the lysosomes, organelles where the pH value drops to 6.0 and 5.0, respectively. We aimed to design and characterize pH/temperature-responsive carriers for the effective delivery of the anti-tumoral drug doxorubicin. To this purpose, poly(N-isopropylacrylamide-co-vinylimidazole) was synthesized as an attractive pH/temperature-sensitive copolymer. Microspheres made of this copolymer, loaded with doxorubicin (MS-DXR), disintegrate in monodisperse nanospheres (NS-DXR) under conditions similar to that found in the bloodstream (pH = 7.4, temperature of 36 °C) releasing a small amount of payload. However, in environments that simulate the endosomal and lysosomal conditions, nanospheres solubilize, releasing the entire amount of drug. We followed the NS-DXR internalization using two cancer cell lines, hepatic carcinoma HepG2 cells and lung adenocarcinoma A549 cells. The data showed that NS-DXR are internalized to a greater extent by HepG2 cells than A549 cells, and this correlated with increased cytotoxicity induced by NS-DXR in HepG2 cells compared with A549 cells. Moreover, NS-DXR particles do not cause hemolysis and erythrocytes aggregation. Administered in vivo, NS-DXR localized in the liver and kidneys of mice, and the loading of DXR into NS resulted in the reduced renal clearance of DXR. In conclusion, the newly developed poly(N-isopropylacrylamide-co-vinyl imidazole) particles are biocompatible and may be introduced as carriers for doxorubicin to hepatic tumors

    Antitumor Properties of a New Macrocyclic Tetranuclear Oxidovanadium(V) Complex with 3-Methoxysalicylidenvaline Ligand

    Full text link
    A wide variety of metal-based compounds have been obtained and studied for their antitumor activity since the intensely used cytostatic drugs (e.g., cisplatin) failed to accomplish their expected pharmacological properties. Thus, we aimed to develop a new vanadium-based drug and assess its antitumor properties using the human hepatocarcinoma (HepG2) cell line. The compound was synthesized from vanadyl sulfate, DL-valine, and o-vanillin and was spectrally and structurally characterized (UV-Vis, IR, CD, and single-crystal/powder-XRD). Compound stability in biological media, cell uptake, and the interaction with albumin were assessed. The mechanisms of its antitumor activity were determined compared to cisplatin by performing cytotoxicity, oxidative and mitochondrial status, DNA fragmentation, β-Tubulin synthesis investigation, and cell cycle studies. Herein, we developed a macrocyclic tetranuclear oxidovanadium(V) compound, [(VVO)(L)(CH3O)]4, having coordinated four Schiff base (H2L) ligands, 3-methoxysalicylidenvaline. We showed that [(VVO)(L)(CH3O)]4: (i) has pH-dependent stability in biological media, (ii) binds to albumin in a dose-dependent manner, (iii) is taken up by cells in a time-dependent way, (iv) has a higher capacity to induce cell death compared to cisplatin (IC50 = 6 μM vs. 10 μM), by altering the oxidative and mitochondrial status in HepG2 cells. Unlike cisplatin, which blocks the cell cycle in the S-phase, the new vanadium-based compound arrests it in S and G2/M-phase, whereas no differences in the induction of DNA fragmentation and reduction of β-Tubulin synthesis between the two were determined. Thus, the [(VVO)(L)(CH3O)]4 antitumor mechanism involved corroboration between the generation of oxidative species, mitochondrial dysfunction, degradation of DNA, cell cycle arrest in the S and G2/M-phase, and β-Tubulin synthesis reduction. Our studies demonstrate the potent antitumor activity of [(VVO)(L)(CH3O)]4 and propose it as an attractive candidate for anticancer therapy

    Chemical Attachment of 5-Nitrosalicylaldimine Motif to Silatrane Resulting in an Organic–Inorganic Structure with High Medicinal Significance

    Full text link
    Two chemical motifs of interest for medicinal chemistry, silatrane as 1-(3-aminopropyl) silatrane (SIL M), and nitro group attached in position 5 to salicylaldehyde, are coupled in a new structure, 1-(3-{[(2-hydroxy-5-nitrophenyl)methylidene]amino}propyl)silatrane (SIL-BS), through an azomethine moiety, also known as a versatile pharmacophore. The high purity isolated compound was structurally characterized by an elemental, spectral, and single crystal X-ray diffraction analysis. Given the structural premises for being a biologically active compound, different specific techniques and protocols have been used to evaluate their in vitro hydrolytic stability in simulated physiological conditions, the cytotoxicity on two cancer cell lines (HepG2 and MCF7), and protein binding ability—with a major role in drug ADME (Absorption, Distribution, Metabolism and Excretion), in parallel with those of the SIL M. While the latter had a good biocompatibility, the nitro-silatrane derivative, SIL-BS, exhibited a higher cytotoxic activity on HepG2 and MCF7 cell lines, performance assigned, among others, to the known capacity of the nitro group to promote a specific cytotoxicity by a “activation by reduction” mechanism. Both compounds exhibited increased bio- and muco-adhesiveness, which can favor an optimized therapeutic effect by increased drug permeation and residence time in tumor location. Additional benefits of these compounds have been demonstrated by their antimicrobial activity on several fungi and bacteria species. Molecular docking computations on Human Serum Albumin (HSA) and MPRO COVID-19 protease demonstrated their potential in the development of new drugs for combined therapy
    corecore