9 research outputs found
Dynamic response of herbaceous vegetation to gap opening in a Central European beech stand
Herbaceous ground vegetation in artificially-created gaps was studied in a managed beech (Fagus sylvatica L.) forest over a period of eight years in Northern Hungary, Central Europe. These gaps were being used as an alternative to the regular shelterwood system to create uneven-aged stands. The effects of gap size (15 and 40 m diameter) and canopy openness on herbaceous species colonization and persistence were assessed in a systematic grid of 5 5 m. Overall, herbaceous cover was low before gap creation, increased soon afterwards, and continued to rise over time. The number of herb species increased in the gaps and, to a lesser extent, in adjacent areas under the remaining tree canopy. Colonization of gaps was rapid and there was substantial turnover of species i.e. various species disappeared from the gaps over time whilst others colonized. Species with both long-term persistent seed banks and long distance dispersal abilities were the most successful types colonizing gaps. Six species occurred preferentially in large gaps, while only one species was found to prefer small gaps. Species present before gap creation survived in both gap sizes. Smaller gaps with a diameter of half the height of canopy trees also tended to remain free of common weed species, whereas large cover of Rubus fruticosus L. and Calamagrostis epigejos (L.) Roth could hamper natural regeneration in larger gaps. For the successful regeneration of beech we recommend the use of small gaps complemented by few large gaps.</ja:p
A comparison of three indirect methods for estimating understory light at different spatial scales in temperate mixed forests
Three indirect light measurement methods were compared in mixed deciduous and coniferous forests with heterogeneous stand structure: tRAYci — a spatially explicit light model calculating percentage of above canopy light (PACL); LAI-2000 Plant Canopy Analyzer measuring diffuse non-interceptance (D1FN); and spherical densiometer estimating canopy openness (CO). Correlations between the different light variables were analyzed at several spatial scales (at 5 × 5, 10 × 10, 15 × 15, 20 × 20 and 30 × 30 m2
). Relationships between light variables and the cover of alight flexible plant, blackberry (
Rubus fruticosus
agg.), as a potentially sensitive response variable for light conditions were also investigated. LAI-2000 (D1FN) and tRAYci (PACL) seemed the most appropriate for the description of the light environment in the investigated stands. D1FN and PACL had stronger correlations with each other and with blackberry cover than CO. Spatial heterogeneity of light (expressed with coefficient of variation) showed much stronger correlations than mean values both between the methods and between light intensity and
Rubus
cover. The correlation values between the methods increased towards coarser scales (from 5 × 5 to 30 × 30 m2
), while the correlation between light intensity and blackberry cover had a maximal response at the scale of 20 × 20 m2
if a lower resolution of light estimation was used, and had also a maximum at smaller scales if the light was calculated for more points per plot by tRAYci. LAI-2000 can be recommended for the comparison of different stands, however, for fine scale description of light conditions of a stand tRAYci seems to be more appropriate