97 research outputs found

    Optimization of a Langmuir-Taylor detector for lithium

    Full text link
    This paper describes the construction and optimization of a Langmuir-Taylor detector for lithium, using a rhenium ribbon. The absolute detection probability of this very sensitive detector is measured and the dependence of this probability with oxygen pressure and surface temperature is studied. Sources of background signal and their minimization are also discussed in details. And a comparison between our data concerning the response time of the detector and literature values is given. A theoretical analysis has been made: this analysis supports the validity of the Saha-Langmuir law to relate the ionization probability to the work function. Finally, the rapid variations of the work function with oxygen pressure and temperature are explained by a chemical equilibrium model.Comment: 11 pages, 7 figures, to appear in Rev. Sci. Instru

    Master Equation for the Motion of a Polarizable Particle in a Multimode Cavity

    Full text link
    We derive a master equation for the motion of a polarizable particle weakly interacting with one or several strongly pumped cavity modes. We focus here on massive particles with complex internal structure such as large molecules and clusters, for which we assume a linear scalar polarizability mediating the particle-light interaction. The predicted friction and diffusion coefficients are in good agreement with former semiclassical calculations for atoms and small molecules in weakly pumped cavities, while the current rigorous quantum treatment and numerical assessment sheds a light on the feasibility of experiments that aim at optically manipulating beams of massive molecules with multimode cavities.Comment: 30 pages, 5 figure

    Mineral dust photochemistry induces nucleation events in the presence of SO2

    Full text link
    Large quantities of mineral dust particles are frequently ejected into the atmosphere through the action of wind. The surface of dust particles acts as a sink for many gases, such as sulfur dioxide. It is well known that under most conditions, sulfur dioxide reacts on dust particle surfaces, leading to the production of sulfate ions. In this report, for specific atmospheric conditions, we provide evidence for an alternate pathway in which a series of reactions under solar UV light produces first gaseous sulfuric acid as an intermediate product before surface-bound sulfate. Metal oxides present in mineral dust act as atmospheric photocatalysts promoting the formation of gaseous OH radicals, which initiate the conversion of SO(2) to H(2)SO(4) in the vicinity of dust particles. Under low dust conditions, this process may lead to nucleation events in the atmosphere. The laboratory findings are supported by recent field observations near Beijing, China, and Lyon, France

    An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    Full text link
    We present an all solid-state narrow line-width laser source emitting 670 mW670\,\mathrm{mW} output power at 671 nm671\,\mathrm{nm} delivered in a diffraction-limited beam. The \linebreak source is based on a fre-quency-doubled diode-end-linebreak pumped ring laser operating on the 4F3/2→4I13/2{^4F}_{3/2} \rightarrow {^4I}_{13/2} transition in Nd:YVO4_4. By using periodically-poled po-tassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100 GHz100\,\rm GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented
    • …
    corecore