2 research outputs found

    Spire1 and Myosin Vc promote Ca2+-evoked externalization of von Willebrand factor in endothelial cells

    Get PDF
    Weibel-Palade bodies (WPB) are endothelial cell-specific storage granules that regulate vascular hemostasis by releasing the platelet adhesion receptor von Willebrand factor (VWF) following stimulation. Fusion of WPB with the plasma membrane is accompanied by the formation of actin rings or coats that support the expulsion of large multimeric VWF fibers. However, factor(s) organizing these actin ring structures have remained elusive. We now identify the actin-binding proteins Spire1 and Myosin Vc (MyoVc) as cytosolic factors that associate with WPB and are involved in actin ring formation at WPB-plasma membrane fusion sites. We show that both, Spire1 and MyoVc localize only to mature WPB and that upon Ca2+ evoked exocytosis of WPB, Spire1 and MyoVc together with F-actin concentrate in ring-like structures at the fusion sites. Depletion of Spire1 or MyoVc reduces the number of these actin rings and decreases the amount of VWF externalized to the cell surface after histamine stimulation

    EPLIN-α and -β Isoforms Modulate Endothelial Cell Dynamics through a Spatiotemporally Differentiated Interaction with Actin.

    No full text
    Actin-binding proteins are essential for linear and branched actin filament dynamics that control shape change, cell migration, and cell junction remodeling in vascular endothelium (endothelial cells [ECs]). The epithelial protein lost in neoplasm (EPLIN) is an actin-binding protein, expressed as EPLIN-α and EPLIN-β by alternative promoters; however, the isoform-specific functions are not yet understood. Aortic compared to cava vein ECs and shear stress-exposed cultured ECs express increased EPLIN-β levels that stabilize stress fibers. In contrast, EPLIN-α expression is increased in growing and migrating ECs, is targeted to membrane protrusions, and terminates their growth via interaction with the Arp2/3 complex. The data indicate that EPLIN-α controls protrusion dynamics while EPLIN-β has an actin filament stabilizing role, which is consistent with FRAP analyses demonstrating a lower EPLIN-β turnover rate compared to EPLIN-α. Together, EPLIN isoforms differentially control actin dynamics in ECs, essential in shear stress responses, cell migration, and barrier function
    corecore