6 research outputs found

    Characterisation of two novel oleaginous yeast strains for efficient and sustainable production of acetyl-CoA derived products

    Get PDF
    Yeasts are major players in industry for production of valuable compounds. The market for yeast bioproduction is constantly growing, and sustainable bioproduction from renewable feedstocks is becoming increasingly important. Previously, Sacccharomyces cerevisiae has been the key player in research and industrial applications, and engineered strains have been created to have many features already present in other yeast species (production of valuable products, and utilisation of pentose sugars as carbon sources, etc.). The efficient use of pentoses is a highly investigated topic due to their abundance in renewable feedstocks such as lignocellulosic hydrolysates. Numerous yeast species exist that are naturally capable of assimilating pentose sugars with greater efficiency than engineered Saccharomyces. \ua0These species can also produce industrially relevant products like terpenoids, enzymes, and bioactive substances. Using the biodiversity naturally available among yeasts is an important step towards the improvement of sustainable bioproduction.\ua0This thesis focuses on and discusses the importance of non-conventional yeasts, their isolation, characterization, and potential bioproduction of acetyl-CoA derived compounds. Two novel, non-conventional basidiomycete oleaginous yeast strains were investigated in detail: BOT-O, a Pseudozyma hubeiensis strain with high levels of storage lipid and biosurfactant production, and BOT-A2, a Rhodotorula toruloides strain, which produces of high-value carotenoids and storage lipids. Both were isolated from plant material and characterised regarding physiology, genomics and transcriptomics. The strains were de novo sequenced, their genomes assembled and annotated. RNA sequencing was conducted to investigate the differences in transcriptional levels between growth on xylose and glucose, or during nitrogen starvation, which is an important condition for high lipid production. Both BOT-O and BOT-A2 produced high amounts of lipids on glucose or xylose. BOT-O showed identical growth rates on both sugars. Both were also somewhat tolerant towards lignocellulosic inhibitors. Interestingly, BOT-O was more tolerant towards furanic aldehydes, while BOT-A2 was more tolerant towards weak acids. Six new promoters that are regulated during nitrogen starvation were identified for BOT-A2. They are a valuable addition to the R. toruloides genetic engineering toolbox. Overall, these two new isolates have highly interesting characteristics and the potential to become hosts for bioproduction of native and non-native acetyl-CoA derived compounds

    Nutrient-supplemented propagation of Saccharomyces cerevisiae improves its lignocellulose fermentation ability

    Get PDF
    Propagation conditions have been shown to be of considerable importance for the fermentation ability of Saccharomyces cerevisiae. The limited tolerance of yeast to inhibitors present in lignocellulosic hydrolysates is a major challenge in second-generation bioethanol production. We have investigated the hypothesis that the addition of nutrients during propagation leads to yeast cultures with improved ability to subsequently ferment lignocellulosic materials. This hypothesis was tested with and without short-term adaptation to wheat straw or corn stover hydrolysates during propagation of the yeast. The study was performed using the industrial xylose-fermenting S. cerevisiae strain CR01. Adding a mixture of pyridoxine, thiamine, and biotin to unadapted propagation cultures improved cell growth and ethanol yields during fermentation in wheat straw hydrolysate from 0.04\ua0g\ua0g−1 to 0.19\ua0g\ua0g−1 and in corn stover hydrolysate from 0.02\ua0g\ua0g−1 to 0.08\ua0g\ua0g−1. The combination of short–term adaptation and supplementation with the vitamin mixture during propagation led to ethanol yields of 0.43\ua0g\ua0g−1 in wheat straw hydrolysate fermentation and 0.41\ua0g\ua0g−1 in corn stover hydrolysate fermentation. These ethanol yields were improved compared to ethanol yields from cultures that were solely short-term adapted (0.37 and 0.33\ua0g g−1). Supplementing the propagation medium with nutrients in combination with short-term adaptation was thus demonstrated to be a promising strategy to improve the efficiency of industrial lignocellulosic fermentation

    Screening of xylose utilizing and high lipid producing yeast strains as a potential candidate for industrial application

    Get PDF
    BACKGROUND: Sustainable production of oil for food, feed, fuels and other lipid-based chemicals is essential to meet the demand of the increasing human population. Consequently, novel and sustainable resources such as lignocellulosic hydrolysates and processes involving these must be explored. In this paper we screened for naturally-occurring xylose utilizing oleaginous yeasts as cell factories for lipid production, since pentose sugar catabolism plays a major role in efficient utilization of lignocellulosic feedstocks. Glycerol utilization, which is also beneficial in yeast-based oil production as glycerol is a common by-product of biodiesel production, was investigated as well. Natural yeast isolates were studied for lipid accumulation on a variety of substrates, and the highest lipid accumulating strains were further investigated in shake flask cultivations and fermenter studies on xylose and hydrolysate. RESULTS: By collecting leaves from exotic plants in greenhouses and selective cultivation on xylose, a high frequency of oleaginous yeasts was obtained (> 40%). Different cultivation conditions lead to differences in fatty acid contents and compositions, resulting in a set of strains that can be used to select candidate production strains for different purposes. In this study, the most prominent strains were identified as Pseudozyma hubeiensis BOT-O and Rhodosporidium toruloides BOT-A2. The fatty acid levels per cell dry weight after cultivation in a nitrogen limited medium with either glucose, xylose or glycerol as carbon source, respectively, were 46.8, 43.2 and 38.9% for P. hubeiensis BOT-O, and 40.4, 27.3 and 42.1% for BOT-A2. Furthermore, BOT-A2 accumulated 45.1% fatty acids per cell dry weight in a natural plant hydrolysate, and P. hubeiensis BOT-O showed simultaneous glucose and xylose consumption with similar growth rates on both carbon sources. The fatty acid analysis demonstrated both long chain and poly-unsaturated fatty acids, depending on strain and medium. CONCLUSIONS: We found various natural yeast isolates with high lipid production capabilities and the ability to grow not only on glucose, but also xylose, glycerol and natural plant hydrolysate. R. toruloides BOT-A2 and P. hubeiensis BOT-O specifically showed great potential as production strains with high levels of storage lipids and comparable growth to that on glucose on various other substrates, especially compared to currently used lipid production strains. In BOT-O, glucose repression was not detected, making it particularly desirable for utilization of plant waste hydrolysates. Furthermore, the isolated strains were shown to produce oils with fatty acid profiles similar to that of various plant oils, making them interesting for future applications in fuel, food or feed production

    Functional genome annotation and transcriptome analysis of Pseudozyma hubeiensis BOT-O, an oleaginous yeast that utilizes glucose and xylose at equal rates

    Get PDF
    Pseudozyma hubeiensis is a basidiomycete yeast that has the highly desirable traits for lignocellulose valorisation of being equally efficient at utilization of glucose and xylose, and capable of their co-utilization. The species has previously mainly been studied for its capacity to produce secreted biosurfactants in the form of mannosylerythritol lipids, but it is also an oleaginous species capable of accumulating high levels of triacylglycerol storage lipids during nutrient starvation. In this study, we aimed to further characterize the oleaginous nature of P. hubeiensis by evaluating metabolism and gene expression responses during storage lipid formation conditions with glucose or xylose as a carbon source. The genome of the recently isolated P. hubeiensis BOT-O strain was sequenced using MinION long-read sequencing and resulted in the most contiguous P. hubeiensis assembly to date with 18.95 Mb in 31 contigs. Using transcriptome data as experimental support, we generated the first mRNA-supported P. hubeiensis genome annotation and identified 6540 genes. 80% of the predicted genes were assigned functional annotations based on protein homology to other yeasts. Based on the annotation, key metabolic pathways in BOT-O were reconstructed, including pathways for storage lipids, mannosylerythritol lipids and xylose assimilation. BOT-O was confirmed to consume glucose and xylose at equal rates, but during mixed glucose-xylose cultivation glucose was found to be taken up faster. Differential expression analysis revealed that only a total of 122 genes were significantly differentially expressed at a cut-off of |log2 fold change| ≥ 2 when comparing cultivation on xylose with glucose, during exponential growth and during nitrogen-starvation. Of these 122 genes, a core-set of 24 genes was identified that were differentially expressed at all time points. Nitrogen-starvation resulted in a larger transcriptional effect, with a total of 1179 genes with significant expression changes at the designated fold change cut-off compared with exponential growth on either glucose or xylose

    Expanding the genetic toolbox of Rhodotorula toruloides by identification and validation of six novel promoters induced or repressed under nitrogen starvation

    Get PDF
    Abstract Background The non-conventional yeast Rhodotorula toruloides is an emerging host organism in biotechnology by merit of its natural capacity to accumulate high levels of carotenoids and intracellular storage lipids from a variety of carbon sources. While the number of genetic engineering strategies that employ R. toruloides is increasing, the lack of genetic tools available for modification of this yeast is still limiting strain development. For instance, several strong, constitutive R. toruloides promoters have been characterized, but to date, only five inducible promoters have been identified. Although nitrogen-limited cultivation conditions are commonly used to induce lipid accumulation in this yeast, no promoters regulated by nitrogen starvation have been described for R. toruloides. Results In this study, we used a combination of genomics and transcriptomics methods to identify novel R. toruloides promoter sequences that are either inducible or repressible by nitrogen starvation. RNA sequencing was used to assess gene expression in the recently isolated strain R. toruloides BOT-A2 during exponential growth and during nitrogen starvation, when cultivated with either glucose or xylose as the carbon source. The genome of BOT-A2 was sequenced using a combination of long- and short-read sequencing and annotated with support of the RNAseq data. Differential expression analysis was used to identify genes with a |log2 fold change|≥ 2 when comparing their expression during nitrogen depletion to that during exponential growth. The promoter regions from 16 of these genes were evaluated for their ability to drive the expression of a fluorescent reporter gene. Three promoters that were clearly upregulated under nitrogen starvation and three that were downregulated were selected and further characterized. One promoter, derived from gene RTBOTA2_003877, was found to function like an on–off switch, as it was only upregulated under full nitrogen depletion and downregulated in the presence of the nitrogen source. Conclusions Six new R. toruloides promoters that were either upregulated or downregulated under nitrogen-starvation were identified. These substantially contribute to the available promoters when engineering this organism and are foreseen to be particularly useful for future engineering strategies requiring specific regulation of target genes in accordance with nitrogen availability

    Expanding the genetic toolbox of <i>Rhodotorula toruloides</i> by identification and validation of six novel promoters induced or repressed under nitrogen starvation

    No full text
    Background: The non-conventional yeast Rhodotorula toruloides is an emerging host organism in biotechnology by merit of its natural capacity to accumulate high levels of carotenoids and intracellular storage lipids from a variety of carbon sources. While the number of genetic engineering strategies that employ R. toruloides is increasing, the lack of genetic tools available for modification of this yeast is still limiting strain development. For instance, several strong, constitutive R. toruloides promoters have been characterized, but to date, only five inducible promoters have been identified. Although nitrogen-limited cultivation conditions are commonly used to induce lipid accumulation in this yeast, no promoters regulated by nitrogen starvation have been described for R. toruloides.Results: In this study, we used a combination of genomics and transcriptomics methods to identify novel R. toruloides promoter sequences that are either inducible or repressible by nitrogen starvation. RNA sequencing was used to assess gene expression in the recently isolated strain R. toruloides BOT-A2 during exponential growth and during nitrogen starvation, when cultivated with either glucose or xylose as the carbon source. The genome of BOT-A2 was sequenced using a combination of long- and short-read sequencing and annotated with support of the RNAseq data. Differential expression analysis was used to identify genes with a |log2 fold change|≥ 2 when comparing their expression during nitrogen depletion to that during exponential growth. The promoter regions from 16 of these genes were evaluated for their ability to drive the expression of a fluorescent reporter gene. Three promoters that were clearly upregulated under nitrogen starvation and three that were downregulated were selected and further characterized. One promoter, derived from gene RTBOTA2_003877, was found to function like an on–off switch, as it was only upregulated under full nitrogen depletion and downregulated in the presence of the nitrogen source.Conclusions: Six new R. toruloides promoters that were either upregulated or downregulated under nitrogen-starvation were identified. These substantially contribute to the available promoters when engineering this organism and are foreseen to be particularly useful for future engineering strategies requiring specific regulation of target genes in accordance with nitrogen availability
    corecore