299 research outputs found

    Geometric Phases and Mielnik's Evolution Loops

    Full text link
    The cyclic evolutions and associated geometric phases induced by time-independent Hamiltonians are studied for the case when the evolution operator becomes the identity (those processes are called {\it evolution loops}). We make a detailed treatment of systems having equally-spaced energy levels. Special emphasis is made on the potentials which have the same spectrum as the harmonic oscillator potential (the generalized oscillator potentials) and on their recently found coherent states.Comment: 11 pages, harvmac, 2 figures available upon request; CINVESTAV-FIS GFMR 11/9

    Supersymmetric partners of the trigonometric Poschl-Teller potentials

    Full text link
    The first and second-order supersymmetry transformations are used to generate Hamiltonians with known spectra departing from the trigonometric Poschl-Teller potentials. The several possibilities of manipulating the initial spectrum are fully explored, and it is shown how to modify one or two levels, or even to leave the spectrum unaffected. The behavior of the new potentials at the boundaries of the domain is studied.Comment: 20 pages, 4 figure

    Nonlocal looking equations can make nonlinear quantum dynamics local

    Full text link
    A general method for extending a non-dissipative nonlinear Schr\"odinger and Liouville-von Neumann 1-particle dynamics to an arbitrary number of particles is described. It is shown at a general level that the dynamics so obtained is completely separable, which is the strongest condition one can impose on dynamics of composite systems. It requires that for all initial states (entangled or not) a subsystem not only cannot be influenced by any action undertaken by an observer in a separated system (strong separability), but additionally that the self-consistency condition Tr2ϕ1+2t=ϕ1tTr2Tr_2\circ \phi^t_{1+2}=\phi^t_{1}\circ Tr_2 is fulfilled. It is shown that a correct extension to NN particles involves integro-differential equations which, in spite of their nonlocal appearance, make the theory fully local. As a consequence a much larger class of nonlinearities satisfying the complete separability condition is allowed than has been assumed so far. In particular all nonlinearities of the form F(ψ(x))F(|\psi(x)|) are acceptable. This shows that the locality condition does not single out logarithmic or 1-homeogeneous nonlinearities.Comment: revtex, final version, accepted in Phys.Rev.A (June 1998

    Solving simultaneously Dirac and Ricatti equations

    Full text link
    We analyse the behaviour of the Dirac equation in d=1+1d=1+1 with Lorentz scalar potential. As the system is known to provide a physical realization of supersymmetric quantum mechanics, we take advantage of the factorization method in order to enlarge the restricted class of solvable problems. To be precise, it suffices to integrate a Ricatti equation to construct one-parameter families of solvable potentials. To illustrate the procedure in a simple but relevant context, we resort to a model which has proved useful in showing the phenomenon of fermion number fractionalization

    Structure of nonlinear gauge transformations

    Full text link
    Nonlinear Doebner-Goldin [Phys. Rev. A 54, 3764 (1996)] gauge transformations (NGT) defined in terms of a wave function ψ(x)\psi(x) do not form a group. To get a group property one has to consider transformations that act differently on different branches of the complex argument function and the knowledge of the value of ψ(x)\psi(x) is not sufficient for a well defined NGT. NGT that are well defined in terms of ψ(x)\psi(x) form a semigroup parametrized by a real number γ\gamma and a nonzero λ\lambda which is either an integer or 1λ1-1\leq \lambda\leq 1. An extension of NGT to projectors and general density matrices leads to NGT with complex γ\gamma. Both linearity of evolution and Hermiticity of density matrices are gauge dependent properties.Comment: Final version, to be published in Phys.Rev.A (Rapid Communication), April 199

    On classical models of spin

    Full text link
    The reason for recalling this old paper is the ongoing discussion on the attempts of circumventing certain assumptions leading to the Bell theorem (Hess-Philipp, Accardi). If I correctly understand the intentions of these Authors, the idea is to make use of the following logical loophole inherent in the proof of the Bell theorem: Probabilities of counterfactual events A and A' do not have to coincide with actually measured probabilities if measurements of A and A' disturb each other, or for any other fundamental reason cannot be performed simulaneously. It is generally believed that in the context of classical probability theory (i.e. realistic hidden variables) probabilities of counterfactual events can be identified with those of actually measured events. In the paper I give an explicit counterexample to this belief. The "first variation" on the Aerts model shows that counterfactual and actual problems formulated for the same classical system may be unrelated. In the model the first probability does not violate any classical inequality whereas the second does. Pecularity of the Bell inequality is that on the basis of an in principle unobservable probability one derives probabilities of jointly measurable random variables, the fact additionally obscuring the logical meaning of the construction. The existence of the loophole does not change the fact that I was not able to construct a local model violating the inequality with all the other loopholes eliminated.Comment: published as Found. Phys. Lett. 3 (1992) 24

    Magnetic operations: a little fuzzy physics?

    Full text link
    We examine the behaviour of charged particles in homogeneous, constant and/or oscillating magnetic fields in the non-relativistic approximation. A special role of the geometric center of the particle trajectory is elucidated. In quantum case it becomes a 'fuzzy point' with non-commuting coordinates, an element of non-commutative geometry which enters into the traditional control problems. We show that its application extends beyond the usually considered time independent magnetic fields of the quantum Hall effect. Some simple cases of magnetic control by oscillating fields lead to the stability maps differing from the traditional Strutt diagram.Comment: 28 pages, 8 figure

    Complete positivity of nonlinear evolution: A case study

    Get PDF
    Simple Hartree-type equations lead to dynamics of a subsystem that is not completely positive in the sense accepted in mathematical literature. In the linear case this would imply that negative probabilities have to appear for some system that contains the subsystem in question. In the nonlinear case this does not happen because the mathematical definition is physically unfitting as shown on a concrete example.Comment: extended version, 3 appendices added (on mixed states, projection postulate, nonlocality), to be published in Phys. Rev.
    corecore