1,891 research outputs found

    Ferromagnetism in the Hubbard model with Topological/Non-Topological Flat Bands

    Full text link
    We introduce and study two classes of Hubbard models with magnetic flux or with spin-orbit coupling, which have a flat lowest band separated from other bands by a nonzero gap. We study the Chern number of the flat bands, and find that it is zero for the first class but can be nontrivial in the second. We also prove that the introduction of on-site Coulomb repulsion leads to ferromagnetism in both the classes.Comment: 6 pages, 5 figure

    Flat-Bands on Partial Line Graphs -- Systematic Method for Generating Flat-Band Lattice Structures

    Full text link
    We introduce a systematic method for constructing a class of lattice structures that we call ``partial line graphs''.In tight-binding models on partial line graphs, energy bands with flat energy dispersions emerge.This method can be applied to two- and three-dimensional systems. We show examples of partial line graphs of square and cubic lattices. The method is useful in providing a guideline for synthesizing materials with flat energy bands, since the tight-binding models on the partial line graphs provide us a large room for modification, maintaining the flat energy dispersions.Comment: 9 pages, 4 figure

    On the chiral anomaly in non-Riemannian spacetimes

    Get PDF
    The translational Chern-Simons type three-form coframe torsion on a Riemann-Cartan spacetime is related (by differentiation) to the Nieh-Yan four-form. Following Chandia and Zanelli, two spaces with non-trivial translational Chern-Simons forms are discussed. We then demonstrate, firstly within the classical Einstein-Cartan-Dirac theory and secondly in the quantum heat kernel approach to the Dirac operator, how the Nieh-Yan form surfaces in both contexts, in contrast to what has been assumed previously.Comment: 18 pages, RevTe

    Ferromagnetism in a Hubbard model for an atomic quantum wire: a realization of flat-band magnetism from even-membered rings

    Full text link
    We have examined a Hubbard model on a chain of squares, which was proposed by Yajima et al as a model of an atomic quantum wire As/Si(100), to show that the flat-band ferromagnetism according to a kind of Mielke-Tasaki mechanism should be realized for an appropriate band filling in such a non-frustrated lattice. Reflecting the fact that the flat band is not a bottom one, the ferromagnetism vanishes, rather than intensified, as the Hubbard U is increased. The exact diagonalization method is used to show that the critical value of U is in a realistic range. We also discussed the robustness of the magnetism against the degradation of the flatness of the band.Comment: misleading terms and expressions are corrected, 4 pages, RevTex, 5 figures in Postscript, to be published in Phys. Rev. B (rapid communication

    Relationship between spiral and ferromagnetic states in the Hubbard model in the thermodynamic limit

    Full text link
    We explore how the spiral spin(SP) state, a spin singlet known to accompany fully-polarized ferromagnetic (F) states in the Hubbard model, is related with the F state in the thermodynamic limit using the density matrix renormalization group and exact diagonalization. We first obtain an indication that when the F state is the ground state the SP state is also eligible as the ground state in that limit. We then follow the general argument by Koma and Tasaki [J. Stat. Phys. {\bf 76}, 745 (1994)] to find that: (i) The SP state possesses a kind of order parameter. (ii) Although the SP state does not break the SU(2) symmetry in finite systems, it does so in the thermodynamic limit by making a linear combination with other states that are degenerate in that limit. We also calculate the one-particle spectral function and dynamical spin and charge susceptibilities for various 1D finite-size lattices. We find that the excitation spectrum of the SP state and the F state is almost identical. Our present results suggest that the SP and the F states are equivalent in the thermodynamic limit. These properties may be exploited to determine the magnetic phase diagram from finite-size studies.Comment: 17 figures, to be published in Phys. Rev.

    Tensor mass and particle number peak at the same location in the scalar-tensor gravity boson star models - an analytical proof

    Get PDF
    Recently in boson star models in framework of Brans-Dicke theory, three possible definitions of mass have been identified, all identical in general relativity, but different in scalar-tensor theories of gravity.It has been conjectured that it's the tensor mass which peaks, as a function of the central density, at the same location where the particle number takes its maximum.This is a very important property which is crucial for stability analysis via catastrophe theory. This conjecture has received some numerical support. Here we give an analytical proof of the conjecture in framework of the generalized scalar-tensor theory of gravity, confirming in this way the numerical calculations.Comment: 9 pages, latex, no figers, some typos corrected, reference adde

    Magnetic field effects on two-dimensional Kagome lattices

    Full text link
    Magnetic field effects on single-particle energy bands (Hofstadter butterfly), Hall conductance, flat-band ferromagnetism, and magnetoresistance of two-dimensional Kagome lattices are studied. The flat-band ferromagnetism is shown to be broken as the flat-band has finite dispersion in the magnetic field. A metal-insulator transition induced by the magnetic field (giant negative magnetoresistance) is predicted. In the half-filled flat band, the ferromagnetic-paramagnetic transition and the metal-insulator one occur simultaneously at a magnetic field for strongly interacting electrons. All of the important magnetic fields effects should be observable in mesoscopic systems such as quantum dot superlattices.Comment: 10 pages, 4 figures, and 1 tabl

    Ferromagnetism in Correlated Electron Systems: Generalization of Nagaoka's Theorem

    Full text link
    Nagaoka's theorem on ferromagnetism in the Hubbard model with one electron less than half filling is generalized to the case where all possible nearest-neighbor Coulomb interactions (the density-density interaction VV, bond-charge interaction XX, exchange interaction FF, and hopping of double occupancies FF') are included. It is shown that for ferromagnetic exchange coupling (F>0F>0) ground states with maximum spin are stable already at finite Hubbard interaction U>UcU>U_c. For non-bipartite lattices this requires a hopping amplitude t0t\leq0. For vanishing FF one obtains UcU_c\to\infty as in Nagaoka's theorem. This shows that the exchange interaction FF is important for stabilizing ferromagnetism at finite UU. Only in the special case X=tX=t the ferromagnetic state is stable even for F=0F=0, provided the lattice allows the hole to move around loops.Comment: 13 pages, uuencoded postscript, includes 1 table and 2 figure

    Stability of ferromagnetism in the Hubbard model on the kagom\'e lattice

    Full text link
    The Hubbard model on the kagom\'e lattice has highly degenerate ground states (the flat lowest band) in the corresponding single-electron problem and exhibits the so-called flat-band ferromagnetism in the many-electron ground states as was found by Mielke. Here we study the model obtained by adding extra hopping terms to the above model. The lowest single-electron band becomes dispersive, and there is no band gap between the lowest band and the other band. We prove that, at half-filling of the lowest band, the ground states of this perturbed model remain saturated ferromagnetic if the lowest band is nearly flat.Comment: 4 pages, 1 figur
    corecore