1,655 research outputs found

    Relationship between spiral and ferromagnetic states in the Hubbard model in the thermodynamic limit

    Full text link
    We explore how the spiral spin(SP) state, a spin singlet known to accompany fully-polarized ferromagnetic (F) states in the Hubbard model, is related with the F state in the thermodynamic limit using the density matrix renormalization group and exact diagonalization. We first obtain an indication that when the F state is the ground state the SP state is also eligible as the ground state in that limit. We then follow the general argument by Koma and Tasaki [J. Stat. Phys. {\bf 76}, 745 (1994)] to find that: (i) The SP state possesses a kind of order parameter. (ii) Although the SP state does not break the SU(2) symmetry in finite systems, it does so in the thermodynamic limit by making a linear combination with other states that are degenerate in that limit. We also calculate the one-particle spectral function and dynamical spin and charge susceptibilities for various 1D finite-size lattices. We find that the excitation spectrum of the SP state and the F state is almost identical. Our present results suggest that the SP and the F states are equivalent in the thermodynamic limit. These properties may be exploited to determine the magnetic phase diagram from finite-size studies.Comment: 17 figures, to be published in Phys. Rev.

    On the chiral anomaly in non-Riemannian spacetimes

    Get PDF
    The translational Chern-Simons type three-form coframe torsion on a Riemann-Cartan spacetime is related (by differentiation) to the Nieh-Yan four-form. Following Chandia and Zanelli, two spaces with non-trivial translational Chern-Simons forms are discussed. We then demonstrate, firstly within the classical Einstein-Cartan-Dirac theory and secondly in the quantum heat kernel approach to the Dirac operator, how the Nieh-Yan form surfaces in both contexts, in contrast to what has been assumed previously.Comment: 18 pages, RevTe

    Magnetic field effects on two-dimensional Kagome lattices

    Full text link
    Magnetic field effects on single-particle energy bands (Hofstadter butterfly), Hall conductance, flat-band ferromagnetism, and magnetoresistance of two-dimensional Kagome lattices are studied. The flat-band ferromagnetism is shown to be broken as the flat-band has finite dispersion in the magnetic field. A metal-insulator transition induced by the magnetic field (giant negative magnetoresistance) is predicted. In the half-filled flat band, the ferromagnetic-paramagnetic transition and the metal-insulator one occur simultaneously at a magnetic field for strongly interacting electrons. All of the important magnetic fields effects should be observable in mesoscopic systems such as quantum dot superlattices.Comment: 10 pages, 4 figures, and 1 tabl

    Circular-Polarization Dependent Cyclotron Resonance in Large-Area Graphene in Ultrahigh Magnetic Fields

    Get PDF
    Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 um, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular-polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.Comment: 9 pages, 3 figure

    Quantum Oscillations in the Underdoped Cuprate YBa2Cu4O8

    Full text link
    We report the observation of quantum oscillations in the underdoped cuprate superconductor YBa2Cu4O8 using a tunnel-diode oscillator technique in pulsed magnetic fields up to 85T. There is a clear signal, periodic in inverse field, with frequency 660+/-15T and possible evidence for the presence of two components of slightly different frequency. The quasiparticle mass is m*=3.0+/-0.3m_e. In conjunction with the results of Doiron-Leyraud et al. for YBa2Cu3O6.5, the present measurements suggest that Fermi surface pockets are a general feature of underdoped copper oxide planes and provide information about the doping dependence of the Fermi surface.Comment: Contains revisions addressing referees' comments including a different Fig 1b. 4 pages, 4 figure

    Flat-band ferromagnetism induced by off-site repulsions

    Full text link
    Density matrix renormalization group method is used to analyze how the nearest-neighbor repulsion V added to the Hubbard model on 1D triangular lattice and a railway trestle (t-t') model will affect the electron-correlation dominated ferromagnetism arising from the interference (frustration). Obtained phase diagram shows that there is a region in smaller-t' side where the critical on-site repulsion above which the system becomes ferromagnetic is reduced when the off-site repulsion is introduced.Comment: 4 pages, RevTex, 6 figures in Postscript, to be published in Phys. Rev.
    corecore