7 research outputs found

    Greenhouse Gas Emissions from Agriculture in EU Countries—State and Perspectives

    No full text
    Agriculture is one of the main sources of greenhouse gas (GHG) emissions and has great potential for mitigating climate change. The aim of this study is to analyze the amount, dynamics of changes, and structure of GHG emissions from agriculture in the EU in the years 2005–2018. The research based on data about GHG collected by the European Environment Agency. The structure of GHG emissions in 2018 in the EU is as follows: enteric fermentation (45%), agricultural soils (37.8%), manure management (14.7%), liming (1.4%), urea application (1%), and field burning of agricultural residues (0.1%). Comparing 2018 with the base year, 2005, emissions from the agricultural sector decreased by about 2%, which is less than the assumed 10% reduction of GHG emissions in the non-emissions trading system (non-ETS) sector. The ambitious goals set by the EU for 2030 assume a 30% reduction in the non-ETS sector. This will require a significant reduction in GHG emissions from agriculture. Based on the analysis of the GHG emission structure and available reduction techniques, it was calculated that in this period, it should be possible to reduce emissions from agriculture by about 15%

    Emisja amoniaku z produkcji zwierzęcej w Polsce i jej regionalne zróżnicowanie, w latach 2005-2017

    No full text
    Agriculture is a significant source of gaseous pollutants such as ammonia, methane, nitrous oxide and volatile organic compounds. Ammonia is particularly important due to the high emission and local, as well as global impact on the environment. The release of NH3 is one of the main ways of nitrogen emission to the atmosphere and it contributes to its subsequent deposition. The aim of the study was to analyze ammonia emissions from animal production in Poland in 2005–2017, its regional diversity and possibilities of its reduction in agriculture. The ammonia emission was calculated for the animal production groups according to the NFR classification. The values of ammonia emission were calculated based on ammonia emission factors used by KOBIZE, in accordance with the EMEP/EEA methods. In 2017, the NH3 emission from Polish agriculture amounted 288 Gg and it accounted for 96% of the emission in 2005. Ammonia emission from livestock production, in 2005–2017, on average accounted for 79.8% of agricultural emissions. The largest share had the cattle (51%) and swine (30%) production. The NH3 emissions differed strongly between provinces. The emission density (kg NH3·km-2·year-1) in provinces with intensive livestock production was about 5.5 times higher than in regions, where livestock production was the lowest. The mitigation strategies should be implemented primarily in provinces where reduction potential is the largest. The assessment of the reduction potential should take into account the NH3 emission per 1 km2 and the low NH3 emission technologies, which are already applied in the regions.Rolnictwo jest znaczącym źródłem zanieczyszczeń gazowych między innymi: amoniaku, metanu, podtlenku azotu i lotnych związków organicznych. Amoniak jest szczególnie istotny ze względu na znaczną emisję i lokalne oraz globalne oddziaływanie na środowisko. Uwalnianie NH3 jest jednym z głównych źródeł emisji azotu do atmosfery i przyczynia się do jego późniejszej depozycji. Celem pracy była analiza emisji amoniaku z produkcji zwierzęcej w Polsce w latach 2005-2017, jej regionalnego zróżnicowania oraz możliwości jej ograniczania z rolnictwa. Emisję amoniaku obliczono dla grup zwierząt zgodnych z klasyfikacją NFR. Do tego celu wykorzystano wartości współczynników emisji amoniaku stosowanych przez KOBIZE, zgodnie z metodami EMEP/EEA. W 2017 r. emisja NH3 z polskiego rolnictwa wyniosła 288 Gg i stanowiła 96% tej emisji z 2005 r. Emisja amoniaku z produkcji zwierzęcej, w latach 2005-2017, stanowiła średnio 79,8% emisji z rolnictwa. Największy udział w tej emisji miała produkcja bydła (51%) i trzody chlewnej (30%). Emisje NH3 różniły się znacznie między województwami. Gęstość emisji (kgNH3km-2rok-1) w województwach o intensywnej produkcji zwierzęcej była około 5,5 razy większa niż w województwach, w których produkcja zwierzęca była najmniejsza. Osiągnięcie unijnych poziomów redukcji emisji NH3 wyznaczonych dla Polski, będzie wymagało zmian w produkcji zwierzęcej i roślinnej. Strategie ograniczania powinny być wprowadzane w pierwszej kolejności w regionach, w których występuje duży potencjał redukcji, czyli w województwach o wysokiej gęstości emisji NH3

    Emisja odorów i amoniaku z tuczarni z wentylacją mechaniczną na głębokiej ściółce w Polsce

    No full text
    Livestock production is the basis of global food production and it is a serious threat to the environment. Significant environmental pollutants are odors and ammonia (NH3) emitted from livestock buildings. The aim of the study was to determine the concentration and emission factors of ammonia and odors, in the summer season, from a deep-litter fattening house. The research was carried out during summer in a mechanically ventilated fattening piggery located in the Greater Poland Voivodeship. Ammonia concentrations were measured using photoacoustic spectrometer Multi Gas Monitor Innova 1312, and odor concentrations were determined by dynamic olfactometry according to EN 13725:2003 using a TO 8 olfactometer. The NH3 emission factors from the studied piggery, in summer, ranged from 8.53 to 21.71 g·day-1·pig-1, (mean value 12.54±4.89 g·days-1·pig-1). Factors related to kg of body mass were from 0.11 to 0.23 g·day-1·kg b.m.-1 (mean value 0.17±0.06 g·day-1·kg b.m.-1). Odor concentrations in the studied piggery were from 755 to 11775 ouE·m-3 and they were diversified (coefficient of variation 43.8%). The mean value of the momentary odor emission factors was 179.5±78.7 ouE·s-1·pig-1. Factor related to kg of body mass was 2.27±1.71 ouE·s-1·kg b.m.-1. In Poland and many other countries, the litter systems of pigs housing are still very popular. Therefore, there is a need to monitor the pollutant emissions from such buildings to identify the factors influencing the amount of this emission. Another important issue is to verify whether the reduction techniques, giving a measurable effect in laboratory research, bring the same reduction effect in production uildings.Produkcja zwierzęca jest podstawą globalnej produkcji żywności i jednocześnie stanowi poważne zagrożenie dla środowiska. Istotnymi zanieczyszczeniami środowiska są emitowane z budynków inwentarskich odory i amoniak (NH3). Celem pracy było określenie stężenia oraz emisji amoniaku i odorów, w sezonie letnim, z tuczarni na głębokiej ściółce oraz wyznaczenie wskaźników emisji amoniaku i odorów. Badania były prowadzone w sezonie letnim, w mechanicznie wentylowanej tuczarni zlokalizowanej w województwie wielkopolskim. Stężenia amoniaku zmierzono za pomocą spektrometru fotoakustycznego Multi Gas Monitor Innova 1312, a stężenia zapachowe oznaczono metodą olfaktometrii dynamicznej zgodnie z normą EN 13725:2003 przy użyciu olfaktometru TO8. W badanej tuczarni na głębokiej ściółce dobowe wartości wskaźnika emisji NH3, w sezonie letnim, wahały się od 8,53 do 21,71 g·doba-1·szt.-1 (średnio 12,54±4,89 g·doba-1·szt.-1). W odniesieniu do kilograma masy ciała wynosiły od 0,11 do 0,23 g·doba-1·kg m.c.-1 (średnio 0,17±0,06 g·doba-1·kg m.c.-1). Stężenie odorów w badanej tuczarni wynosiło od 755 do 11775 ouE·m-3 i było zróżnicowane (współczynnik zmienności 43,8%). Średnia wartość współczynnika chwilowej emisji odorów wynosiła 179,5±78,7 ouE·s-1·szt.-1. W przeliczaniu na kg masy ciała świni wskaźnik ten był równy 2,27±1,71 ouE·s-1·kg m.c.-1. W Polsce i wielu innych krajach wciąż dużą popularnością cieszą się systemy utrzymania świń na ściółce. Istnieje więc potrzeba monitorowania emisji zanieczyszczeń z takich obiektów, celu zidentyfikowania czynników mających wpływ na wielkość tej emisji. Innym ważnym zagadnieniem jest weryfikacja czy techniki ograniczające uwalnianie zanieczyszczeń, dające mierzalny efekt podczas badań laboratoryjnych, przynoszą ten sam skutek redukcyjny w obiektach produkcyjnych

    Odour Emissions from Livestock Buildings

    No full text
    Due to the intensification and concentration of agriculture and the interpenetration of residential and agricultural areas, odours are an important air pollutant. The changes taking place in rural areas mean that not all inhabitants of these areas are involved in agricultural activities, and there are new people looking for an idyllic life in the countryside. In recent years, there has been an increase in the number of complaints concerning odour emissions from agricultural sources. The aim of the study was to compare odour emissions from selected livestock buildings for various animal species in the Great Poland Voivodeship. The assessment of odour concentrations was made in accordance with EN 13725: 2003 using the TO 8 olfactometer in the accredited olfactometric laboratory of the Institute of Technology and Life Sciences National Research Institute in Poznań. The fattening house showed the highest odour burden for the surroundings (mean odour concentration and odour emission factor: 450 ouE·m3 and 0.419 ouE·s−1·kg−1, respectively). In the case of buildings for poultry and dairy cows, the differences in the emission factors were not large. The emission factor for poultry (0.232 ouE·s−1·kg−1) was 22% higher than that for dairy cows (0.190 ouE·s−1·kg−1). Conversely, the mean concentration in the hen house (281 ouE·m3) was 18% lower than that in the dairy cow barn (342 ouE·m3)

    Odour Emissions from Livestock Buildings

    No full text
    Due to the intensification and concentration of agriculture and the interpenetration of residential and agricultural areas, odours are an important air pollutant. The changes taking place in rural areas mean that not all inhabitants of these areas are involved in agricultural activities, and there are new people looking for an idyllic life in the countryside. In recent years, there has been an increase in the number of complaints concerning odour emissions from agricultural sources. The aim of the study was to compare odour emissions from selected livestock buildings for various animal species in the Great Poland Voivodeship. The assessment of odour concentrations was made in accordance with EN 13725: 2003 using the TO 8 olfactometer in the accredited olfactometric laboratory of the Institute of Technology and Life Sciences National Research Institute in Poznań. The fattening house showed the highest odour burden for the surroundings (mean odour concentration and odour emission factor: 450 ouE·m3 and 0.419 ouE·s−1·kg−1, respectively). In the case of buildings for poultry and dairy cows, the differences in the emission factors were not large. The emission factor for poultry (0.232 ouE·s−1·kg−1) was 22% higher than that for dairy cows (0.190 ouE·s−1·kg−1). Conversely, the mean concentration in the hen house (281 ouE·m3) was 18% lower than that in the dairy cow barn (342 ouE·m3)

    Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler

    No full text
    One of the aims of the environmental and energy policy of the European Union is to reduce the emission of air pollutants, primarily from heat and electricity production, e.g., using renewable energy sources. An example of such a fuel is agricultural biomass including animal manure, which can be used to produce energy in many ways, inter alia direct combustion. The aim of the study was to measure the concentration of NO, NOx, CO, dust and boiler efficiency during the combustion and co-combustion of wood and manure pellets. The research was conducted in the laboratory of the Poznań University of Technology using a 15 kW domestic boiler at maximum power. Manure pellets had higher moisture—9.2%, lower high heating value—17.25 MJ·kg−1, lower low heating value—16.45 MJ·kg−1, and higher ash content—11.23% than wood pellets. The average concentrations of CO, NO, NOx and dust for 100% wood pellets were 198 ± 27 mg·m−3, 129 ± 5 mg·m−3, 198 ± 8 mg·m−3 and 8.7 ± 0.5 mg·m−3, respectively. For this, the fuel boiler power was 13.6 kW (air–fuel ratio 1.48), and it was close to the maximal nominal power. Increasing the share of manure pellets in the burning mixture worsened the stability of the combustion process, and the occurrence of incomplete combustion was observed, which resulted in an increased concentration of CO and dust. Additionally, NO and NOx concentrations also increased. The average boiler power during the combustion of 100% manure pellets was 7.8 kW (air–fuel ratio 2.2), and the average concentrations of CO, NO, NOx and dust were 1548 ± 555 mg·m−3, 355 ± 53 mg·m−3, 554 ± 88 mg·m−3 and 482 ± 63 mg·m−3, respectively

    Wydajność doju krów za pomocą robota w dużym stadzie

    No full text
    The aim of the study was to carry out a research on the use of milking robots compared to utilization of milking parlors. There was no such study in literature on the milking farms in Poland and abroad. The presented study, except for scientific knowledge, provides also practical utilization as a good agriculture practice on the farm. Tests were carried out simultaneously in two barns belonging to the same farm. In barn K, milking was used in the rib bone milking parlor, and in barn N with milking robots. The results covering three years of research from 2016 to 2018 were presented. It was concluded that the milk yield of young cows in both barns was almost identical, while in the second and subsequent lactation, cows in barn N had higher yield. In barn N, about 3% more milk was obtained from LKS below 400 thaus. ml-1 , compared to barn K. Time of cows’ utilization in both cowsheds was similar, while in barn N the life efficiency of culled cows was higher by about 1,000 kg of milk. The level of deficiency and its structure, due to the number and stage of lactation, were very similar in both barns. In barn N, the uniformity of milk production throughout the year was more even compared to barn K. There were reserves in the use of the milking robot due to the low number of cows per milking stand and the need to better adaptation of milking times to current cow performance. The milking robot improves cow welfare and ensures high milk yield and good cytological quality of milk.Celem pracy były badania dotyczące wykorzystania robotów udojowych w porównaniu do stosowania hal udojowych w oborach gospodarstw rodzinnych. Prezentowane badania oprócz wiedzy naukowej dają również praktyczne zastosowanie nowych technologii jako dobrej praktyki rolniczej w gospodarstwie. Testy przeprowadzono jednocześnie w dwóch oborach należących do tego samego gospodarstwa. W oborze K dojenie odbywało się przy wykorzystaniu hali udojowej rybia ość, a w oborze N stosowano roboty udojowe. Przedstawiono wyniki obejmujące trzy lata badań od roku 2016 do 2018 roku. Stwierdzono, że wydajność mleczna w pierwszej laktacji krów w obu oborach była prawie identyczna, podczas gdy w drugiej i kolejnych laktacjach krowy w oborze N miały większą wydajność. W oborze N uzyskano około 3% więcej mleka z LKS poniżej 400 tys. ml-1 , w porównaniu do obory K. Czas wykorzystania krów w obu oborach był podobny, natomiast w oborze N całkowita wydajność życiowa krów była wyższa o około 1000 kg mleka. W oborze N jednorodność produkcji mleka przez cały rok była bardziej wyrównana niż w stodole K. Wykorzystanie robota udojowego wiązało się z pewnymi rezerwami ze względu na małą liczbę krów na stanowisko dojenia i potrzebę lepszego dostosowania czasów doju do aktualnej wydajności krów. Robot udojowy poprawia dobrostan krów i zapewnia wysoką wydajność mleka oraz dobrą jakość cytologiczną mleka
    corecore