6 research outputs found

    PET‐CT Imaging of Polymeric Nanoparticle Tumor Accumulation in Patients

    No full text
    Several FDA/EMA-approved nanomedicines have demonstrated improved pharmacokinetics and toxicity profiles compared to their conventional chemotherapeutic counterparts. The next step to increase therapeutic efficacy depends on tumor accumulation, which can be highly heterogeneous. A clinical tool for patient stratification is urgently awaited. Therefore, a docetaxel-entrapping polymeric nanoparticle ( 89Zr-CPC634) is radiolabeled, and positron emission tomography/computed tomography (PET/CT) imaging is performed in seven patients with solid tumors with two different doses of CPC634: an on-treatment (containing 60 mg m −2 docetaxel) and a diagnostic (1–2 mg docetaxel) dose (NCT03712423). Pharmacokinetic half-life for 89Zr-CPC634 is mean 97.0 ± 14.4 h on-treatment, and 62.4 ± 12.9 h for the diagnostic dose (p = 0.003). At these doses accumulation is observed in 46% and 41% of tumor lesions with a median accumulation in positive lesions 96 h post-injection of 4.94 and 4.45%IA kg −1 (p = 0.91), respectively. In conclusion, PET/CT imaging with a diagnostic dose of 89Zr-CPC634 accurately reflects on-treatment tumor accumulation and thus opens the possibility for patient stratification in cancer nanomedicine with polymeric nanoparticles

    Localized Peritumoral AL Amyloidosis Associated With Mantle Cell Lymphoma With Plasmacytic Differentiation

    No full text
    Immunoglobulin light chain (AL) amyloidosis is characterized by the deposition of amyloid fibers derived from pathologic immunoglobulin light chains. Although systemic plasma cell neoplasms are the most common cause of AL amyloidosis, a subset of cases is caused by B-cell lymphoproliferative disorders such as lymphoplasmacytic lymphoma or extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue. Recently, SOX11-negative IGH hypermutated mantle cell lymphoma (MCL) is recognized to show frequent plasmacytic differentiation and indolent clinical course. Here, we report 3 cases of peritumoral AL amyloidosis associated with SOX11-negative MCL. All 3 cases showed cyclin D1 expression by immunohistochemistry and CCND1 translocation as detected by fluorescence in situ hybridization analysis. Peritumoral AL amyloidosis was observed at the biopsy sites in the gastrointestinal tract, a supraclavicular lymph node, and a cervical lymph node, and all presented with marked plasmacytic differentiation of lymphoma cells. None of the cases showed evidence of bone marrow involvement by morphology and immunophenotyping. None of the patients had distant organ involvement with systemic amyloidosis. All 3 patients had an indolent clinical course and are alive with disease at the time of the last follow-up (range: 48 to 74 mo). Our findings show that MCL with plasmacytic differentiation can cause amyloid deposition and CCND1 abnormalities should be performed in all cases of extramedullary AL amyloidosis. Recognition of indolent MCL as a cause of peritumoral AL amyloidosis may have important clinical management implications

    Tumor uptake and biodistribution of 89Zirconium-labeled ipilimumab in patients with metastatic melanoma during ipilimumab treatment

    No full text
    Introduction Ipilimumab, a monoclonal antibody targeting CTLA-4, is approved for the treatment of metastatic melanoma and significantly improves overall survival. Because of the high costs and the potential serious toxicity of ipilimumab, it is of great importance to identify biomarkers that correlate with clinical activity and that can be used to select patients who will benefit from CTLA-4 blockade therapy. We hypothesize that patients who do not respond to treatment with ipilimumab have lower drug levels in tumor tissues as compared to patients with a good response to therapy. In addition, we hypothesize that immune related adverse events (irAEs) are associated with high drug levels in the affected tissue. As irAEs usually occur approximately 6-8 weeks after the first injection of ipilimumab, we hypothesize that the drug levels in potentially affected tissues will increase at the second injection. Experimental procedures To visualize in vivo localization of ipilimumab in patients diagnosed with metastatic melanoma, 37 MBq, 10 mg 89Zr-labeled ipilimumab was injected within 2 hours after their first ipilimumab dose (3 mg/kg). Whole body PET/CT scans were obtained at 2h, 72h and 144h post injection and this procedure was repeated three weeks later at the second ipilimumab cycle. Biodistribution and tumor uptake were assessed visually by a nuclear physician. Focal uptake in tumor lesions exceeding local background was determined in volumes of interest (VOI) and SUVpeak values were obtained. Biodistribution was quantified by defining vital organs (i.e. lungs, kidneys, spleen, liver) and calculating mean %ID/kg. Blood was drawn for dosimetry and immunophenotyping at several time points during the trial. Presented here are initial results of the first three patients, up to 29 patients are planned to be included. Results Biodistribution of 89Zr-labeled ipilimumab showed a pattern distinctive for 89Zr-labeled antibodies with uptake in liver and spleen, as well as prolonged circulating antibody in the bloodstream corresponding to the pharmacokinetics of ipilimumab. Visual evaluation confirmed uptake of 89Zr-labeled ipilimumab in 5/12 evaluable tumor lesions, visible at both first and second injection of ipilimumab. Tumor uptake was comparable for 72h and 144h post injection with a mean of 6.9 %ID/kg (range 3.3-10.1) and a SUVpeak of 4.4 (range 2.3-8.9). There were no significant differences in tumor uptake between first and second dose of ipilimumab (mean 7.31 and 6.54 %ID/kg respectively). Conclusions Preliminary data of this ongoing study showed that the tracer is able to visualize and quantify uptake of ipilimumab in tumors. Correlations between tumor uptake and response to treatment will be presented. Furthermore, special interest will be given to uptake in lymphoid organs and locations for irAEs

    First-in-human imaging of nanoparticle entrapped docetaxel (CPC634) in patients with advanced solid tumors using 89Zr-Df-CPC634 PET/CT.

    No full text
    Background: CPC634 is a nanoparticle entrapping docetaxel designed to improve tumor accumulation and tolerability compared to conventionally administered docetaxel by taking advantage of the presumed enhanced permeability and retention (EPR) effect. In vivo imaging with zirconium-89 (89Zr)-desferal (Df)-CPC634 will provide valuable information on its biodistribution and will quantify tumor retention. Methods: Patients with solid tumors not amenable to standard therapy received 37 MBq, 0.1-2mg of 89Zr-Df-CPC634 tracer and whole body PET/CT scans were obtained at 2, 24 and 96h post-injection (p.i.). Patients were administered CPC634 (60mg/m2) two weeks later followed by a second tracer injection and scans at 24 and 96h p.i. Biodistribution was quantified by delineating organs of interest and calculating mean %ID/kg. Visual tumor retention was defined as focal uptake in tumor lesions exceeding local background and quantified as standardized uptake peak values (SUVpeak) in volumes of interest. Results: Five patients were included. Biodistribution of 89Zr-Df-CPC634 showed significant retention in healthy liver, and spleen compared to lung (respectively 2.54, 1.61 and 0.56 mean %ID/kg at 96h p.i.), supporting apparent opsonization of nanoparticles in cells of the reticuloendothelial system. Visual retention was observed in 16/37 evaluable tumor lesions with the highest intensity at 96h p.i, compatible with the assumed EPR effect. Tumor retention showed intra- and interpatient heterogeneity, with a mean %ID/kg of 3.43 [1.14-9.32]. Pre-administering unlabeled CPC634 did not change the mean tumor retention of 89Zr-Df-CPC634 (at 96h p.i. mean 3.50 %ID/kg [1.64-9.97]), however, four additional lesions were visible in comparison to tracer only. Conclusions: The biodistribution of 89Zr-Df-CPC634 was consistent with a prolonged exposure of nanoparticle containing docetaxel. 89Zr-Df-CPC634 showed high retention in tumors confirming the EPR effect of these nanoparticle in humans, and supporting their further development for tumor targeting of therapeutic agents. A Phase II efficacy study in platinum resistant ovarian cancer (NTC03742713) is currently ongoing. Clinical trial information: NCT03712423

    89Zr-DFO-Durvalumab PET/CT Before Durvalumab Treatment in Patients with Recurrent or Metastatic Head and Neck Cancer

    No full text
    In this PD-L1 ImagiNg to prediCt durvalumab treatment response in SCCHN (PINCH) study, we performed 89Zr-DFO-durvalumab (anti-PD-L1 [programmed death ligand 1]) PET/CT in patients with recurrent or metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN) before monotherapy durvalumab treatment. The primary aims were to assess safety and feasibility of 89Zr-DFO-durvalumab PET imaging and predict disease control rate during durvalumab treatment. Secondary aims were to correlate 89Zr-DFO-durvalumab uptake to tumor PD-L1 expression, 18F-FDG uptake, and treatment response of individual lesions. Methods: In this prospective multicenter phase I-II study (NCT03829007), patients with incurable R/M SCCHN underwent baseline 18F-FDG PET and CT or MRI. Subsequently, PD-L1 PET imaging was performed 5 d after administration of 37 MBq of 89Zr-DFO-durvalumab. To optimize imaging conditions, dose finding was performed in the first 14 patients. For all patients (n = 33), durvalumab treatment (1,500 mg/4 wk, intravenously) was started within 1 wk after PD-L1 PET imaging and continued until disease progression or unacceptable toxicity (maximum, 24 mo). CT evaluation was assessed according to RECIST 1.1 every 8 wk. PD-L1 expression was determined by combined positive score on (archival) tumor tissue. 89Zr-DFO-durvalumab uptake was measured in 18F-FDG-positive lesions, primary and secondary lymphoid organs, and blood pool. Results: In total, 33 patients with locoregional recurrent (n = 12) or metastatic SCCHN (n = 21) were enrolled. 89Zr-DFO-durvalumab injection was safe. A dose of 10 mg of durvalumab resulted in highest tumor-to-blood ratios. After a median follow-up of 12.6 mo, overall response rate was 26%. The disease control rate at 16 wk was 48%, with a mean duration of 7.8 mo (range, 1.7-21.1). On a patient level, 89Zr-DFO-durvalumab SUVpeak or tumor-to-blood ratio could not predict treatment response (hazard ratio, 1.5 [95% CI, 0.5-3.9; P = 0.45] and 1.3 [95% CI, 0.5-3.3; P = 0.60], respectively). Also, on a lesion level, 89Zr-DFO-durvalumab SUVpeak showed no substantial correlation to treatment response (Spearman ρ, 0.45; P = 0.051). Lesional 89Zr-DFO-durvalumab uptake did not correlate to PD-L1 combined positive score but did correlate to 18F-FDG SUVpeak (Spearman ρ, 0.391; P = 0.005). Conclusion: PINCH is the first, to our knowledge, PD-L1 PET/CT study in patients with R/M SCCHN and has shown the feasibility and safety of 89Zr-DFO-durvalumab PET/CT in a multicenter trial. 89Zr-DFO-durvalumab uptake did not correlate to durvalumab treatment response
    corecore