4 research outputs found

    Microstructure and Optical Properties of E-Beam Evaporated Zinc Oxide Films—Effects of Decomposition and Surface Desorption

    No full text
    Zinc oxide films have been fabricated by the electron beam physical vapour deposition (PVD) technique. The effect of substrate temperature during fabrication and annealing temperature (carried out in ultra high vacuum conditions) has been investigated by means of atomic force microscopy, scanning electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. It was found that the layer deposited at room temperature is composed of Zn and ZnO crystallites with a number of orientations, whereas those grown at 100 and 200 ∘C consist of ZnO grains and exhibit privileged growth direction. Presented results clearly show the influence of ZnO decomposition and segregation of Zn atoms during evaporation and post-deposition annealing on microstructure and optical properties of zinc oxide films

    Influence of the Microstructure and Optical Constants on Plasmonic Properties of Copper Nanolayers

    No full text
    Copper layers with thicknesses of 12, 25, and 35 nm were thermally evaporated on silicon substrates (Si(100)) with two different deposition rates 0.5 and 5.0 Å/s. The microstructure of produced coatings was studied using atomic force microscopy (AFM) and powder X-ray diffractometer (XRD). Ellipsometric measurements were used to determine the effective dielectric functions <ε˜> as well as the quality indicators of the localized surface plasmon (LSP) and the surface plasmon polariton (SPP). The composition and purity of the produced films were analysed using X-ray photoelectron spectroscopy (XPS)

    Influence of Heat Treatment on Surface, Structural and Optical Properties of Nickel and Copper Phthalocyanines Thin Films

    No full text
    The work presents the effect of annealing on the change of polycrystalline α and β phases of copper and nickel phthalocyanines. We have found that this process has a great influence on the optical properties of the vapor-deposited layers. The performed measurements showed that for various forms of MPc, the values of the refractive index and the extinction coefficient increased, and consequently, so did the absorption coefficient. The AFM images taken showed that the values before and after heating are morphologically different. Raman measurements showed that the band at about 1526 cm−1 (B1g symmetry) has higher intensity for the α form than for the β form. The intensity of this band is related to changing the form of phthalocyanine from α to β. Our measurements have shown that by changing the annealing temperature of the layers, we change their optical properties. As a consequence, we change their optoelectronic parameters, adjusting them to the requirements of new optoelectronic devices, such as solar cells, sensors, displays and OLEDs
    corecore