234 research outputs found
Global analysis of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae
One important source of genomic instability associated with tumor cells is DNA replication stress. In the current study, replication stress was induced in yeast by a 10-fold reduction in the level of the replicative DNA polymerase δ. By DNA microarray analysis and high-throughput DNA sequencing, we showed that this stress resulted in very high rates of both large (aneuploidy, mitotic recombination, deletions and duplications, and translocations) and small (point mutations and small insertion/deletions) genetic alterations. Some of these changes resulted in a selective growth advantage of the cells, demonstrating the role of elevated genetic instability in the rapid evolution of cells in challenging growth conditions
Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes
Despite technical advances, the future of chromatin mapping studies requires an ability to draw accurate comparisons between different chromatin states to enhance our understanding of genome biology. In this study, we used matched chromatin preparations to enable specific and accurate comparisons of Saccharomyces cerevisiae chromatin structures in the presence and absence of the co-repressor protein Tup1. Analysis of wild-type and tup1 Δ chromatin data sets revealed unique organizational themes relating to the function of Tup1. Regulatory regions bound by Tup1 assumed a distinct chromatin architecture composed of a wide nucleosome-depleted region, low occupancy/poorly positioned promoter nucleosomes, a larger number and wider distribution of transcription factor-binding sites and downstream genes with enhanced transcription plasticity. Regions of Tup1-dependent chromatin structure were defined for the first time across the entire yeast genome and are shown to strongly overlap with activity of the chromatin remodeler Isw2. Additionally, Tup1-dependent chromatin structures are shown to relate to distinct biological processes and transcriptional states of regulated genes, including Tup1 stabilization of Minus 1 and Minus 2 promoter nucleosomes at actively repressed genes. Together these results help to enhance our mechanistic understanding of Tup1 regulation of chromatin structure and gene expression
Unisexual Reproduction Drives Meiotic Recombination and Phenotypic and Karyotypic Plasticity in Cryptococcus neoformans
In fungi, unisexual reproduction, where sexual development is initiated without the presence of two compatible mating type alleles, has been observed in several species that can also undergo traditional bisexual reproduction, including the important human fungal pathogens Cryptococcus neoformans and Candida albicans. While unisexual reproduction has been well characterized qualitatively, detailed quantifications are still lacking for aspects of this process, such as the frequency of recombination during unisexual reproduction, and how this compares with bisexual reproduction. Here, we analyzed meiotic recombination during α-α unisexual and a-α bisexual reproduction of C. neoformans. We found that meiotic recombination operates in a similar fashion during both modes of sexual reproduction. Specifically, we observed that in α-α unisexual reproduction, the numbers of crossovers along the chromosomes during meiosis, recombination frequencies at specific chromosomal regions, as well as meiotic recombination hot and cold spots, are all similar to those observed during a-α bisexual reproduction. The similarity in meiosis is also reflected by the fact that phenotypic segregation among progeny collected from the two modes of sexual reproduction is also similar, with transgressive segregation being observed in both. Additionally, we found diploid meiotic progeny were also produced at similar frequencies in the two modes of sexual reproduction, and transient chromosomal loss and duplication likely occurs frequently and results in aneuploidy and loss of heterozygosity that can span entire chromosomes. Furthermore, in both α-α unisexual and a-α bisexual reproduction, we observed biased allele inheritance in regions on chromosome 4, suggesting the presence of fragile chromosomal regions that might be vulnerable to mitotic recombination. Interestingly, we also observed a crossover event that occurred within the MAT locus during α-α unisexual reproduction. Our results provide definitive evidence that α-α unisexual reproduction is a meiotic process similar to a-α bisexual reproduction
Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity
DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers
The fidelity of DNA replication, particularly on GC-rich templates, is reduced by defects of the Fe-S cluster in DNA polymerase δ
Iron-sulfur clusters (4Fe-4S) exist in many enzymes concerned with DNA replication and repair. The contribution of these clusters to enzymatic activity is not fully understood. We identified the MET18 (MMS19) gene of Saccharomyces cerevisiae as a strong mutator on GC-rich genes. Met18p is required for the efficient insertion of iron-sulfur clusters into various proteins. met18 mutants have an elevated rate of deletions between short flanking repeats, consistent with increased DNA polymerase slippage. This phenotype is very similar to that observed in mutants of POL3 (encoding the catalytic subunit of Pol δ) that weaken binding of the iron-sulfur cluster. Comparable mutants of POL2 (Pol ϵ) do not elevate deletions. Further support for the conclusion that met18 strains result in impaired DNA synthesis by Pol δ are the observations that Pol δ isolated from met18 strains has less bound iron and is less processive in vitro than the wild-type holoenzyme
Essential role for polymerase specialization in cellular nonhomologous end joining
Nonhomologous end joining (NHEJ) is a DNA double-strand break repair pathway required for development of the adaptive immune response, maintenance of cellular proliferative capacity, and the response to several commonly used cancer treatments. A major challenge faced by this pathway is that chromosome breaks can have dirty end structures, making them difficult to repair. We show here that two mammalian DNA polymerases have an unexpectedly pivotal role in helping resolve such ends. Each is proficient in different contexts and has a differing impact on repair fidelity. This work sheds light on how NHEJ has evolved to be flexible during repair and identifies two polymerases as critical for this process
Chromatin architectures at fission yeast transcriptional promoters and replication origins
We have used micrococcal nuclease (MNase) digestion followed by deep sequencing in order to obtain a higher resolution map than previously available of nucleosome positions in the fission yeast, Schizosaccharomyces pombe. Our data confirm an unusually short average nucleosome repeat length, ∼152 bp, in fission yeast and that transcriptional start sites (TSSs) are associated with nucleosome-depleted regions (NDRs), ordered nucleosome arrays downstream and less regularly spaced upstream nucleosomes. In addition, we found enrichments for associated function in four of eight groups of genes clustered according to chromatin configurations near TSSs. At replication origins, our data revealed asymmetric localization of pre-replication complex (pre-RC) proteins within large NDRs—a feature that is conserved in fission and budding yeast and is therefore likely to be conserved in other eukaryotic organisms
Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair
Expansion of triplex-forming GAA/TTC repeats in the first intron of FXN gene results in Friedreich's ataxia. Besides FXN, there are a number of other polymorphic GAA/TTC loci in the human genome where the size variations thus far have been considered to be a neutral event. Using yeast as a model system, we demonstrate that expanded GAA/TTC repeats represent a threat to eukaryotic genome integrity by triggering double-strand breaks and gross chromosomal rearrangements. The fragility potential strongly depends on the length of the tracts and orientation of the repeats relative to the replication origin, which correlates with their propensity to adopt triplex structure and to block replication progression. We show that fragility is mediated by mismatch repair machinery and requires the MutSb and endonuclease activity of MutLa. We suggest that the mechanism of GAA/TTC-induced chromosomal aberrations defined in yeast can also operate in human carriers with expanded tracts
MapSplice: Accurate Mapping of RNA-Seq Reads for Splice Junction Discovery
The accurate mapping of reads that span splice junctions is a critical component of all analytic techniques that work with RNA-seq data. We introduce a second generation splice detection algorithm, MapSplice, whose focus is high sensitivity and specificity in the detection of splices as well as CPU and memory efficiency. MapSplice can be applied to both short (\u3c75 bp) and long reads (≥75 bp). MapSplice is not dependent on splice site features or intron length, consequently it can detect novel canonical as well as non-canonical splices. MapSplice leverages the quality and diversity of read alignments of a given splice to increase accuracy. We demonstrate that MapSplice achieves higher sensitivity and specificity than TopHat and SpliceMap on a set of simulated RNA-seq data. Experimental studies also support the accuracy of the algorithm. Splice junctions derived from eight breast cancer RNA-seq datasets recapitulated the extensiveness of alternative splicing on a global level as well as the differences between molecular subtypes of breast cancer. These combined results indicate that MapSplice is a highly accurate algorithm for the alignment of RNA-seq reads to splice junctions. Software download URL: http://www.netlab.uky.edu/p/bioinfo/MapSplice
Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production
Abstract Background The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such particles is undesirable because it slows the fermentation kinetics and reduces the overall bioethanol yield. Results In this study, we investigated the molecular physiology of one of the main S. cerevisiae strains used in Brazilian bioethanol production, PE-2, under two contrasting conditions: typical fermentation, when most yeast cells are in suspension, and co-aggregated fermentation. The transcriptional profile of PE-2 was assessed by RNA-seq during industrial scale fed-batch fermentation. Comparative analysis between the two conditions revealed transcriptional profiles that were differentiated primarily by a deep gene repression in the co-aggregated samples. The data also indicated that Lactobacillus fermentum was likely the main bacterial species responsible for cellular co-aggregation and for the high levels of organic acids detected in the samples. Conclusions Here, we report the high-resolution gene expression profiling of strain PE-2 during industrial-scale fermentations and the transcriptional reprograming observed under co-aggregation conditions. This dataset constitutes an important resource that can provide support for further development of this key yeast biocatalyst
- …