152 research outputs found
The Aguablanca Niâ(Cu) sulfide deposit, SW Spain: geologic and geochemical controls and the relationship with a midcrustal layered mafic complex
The Aguablanca Niâ(Cu) sulfide deposit is
hosted by a breccia pipe within a gabbroâdiorite pluton.
The deposit probably formed due to the disruption of a
partially crystallized layered mafic complex at about 12â
19 km depth and the subsequent emplacement of melts and
breccias at shallow levels (<2 km). The ore-hosting breccias
are interpreted as fragments of an ultramafic cumulate,
which were transported to the near surface along with a
molten sulfide melt. Phlogopite ArâAr ages are 341â
332 Ma in the breccia pipe, and 338â334 Ma in the layered
mafic complex, and are similar to recently reported UâPb
ages of the host Aguablanca Stock and other nearby calcalkaline
metaluminous intrusions (ca. 350â330 Ma). Ore
deposition resulted from the combination of two critical
factors, the emplacement of a layered mafic complex deep
in the continental crust and the development of small
dilational structures along transcrustal strike-slip faults that
triggered the forceful intrusion of magmas to shallow
levels. The emplacement of basaltic magmas in the lower
middle crust was accompanied by major interaction with
the host rocks, immiscibility of a sulfide melt, and the
formation of a magma chamber with ultramafic cumulates
and sulfide melt at the bottom and a vertically zoned mafic
to intermediate magmas above. Dismembered bodies of
mafic/ultramafic rocks thought to be parts of the complex
crop out about 50 km southwest of the deposit in a
tectonically uplifted block (Cortegana Igneous Complex,
Aracena Massif). Reactivation of Variscan structures that
merged at the depth of the mafic complex led to sequential
extraction of melts, cumulates, and sulfide magma. Lithogeochemistry
and Sr and Nd isotope data of the Aguablanca
Stock reflect the mixing from two distinct reservoirs, i.e.,
an evolved siliciclastic middle-upper continental crust and a
primitive tholeiitic melt. Crustal contamination in the deep
magma chamber was so intense that orthopyroxene
replaced olivine as the main mineral phase controlling the early fractional crystallization of the melt. Geochemical
evidence includes enrichment in SiO2 and incompatible
elements, and Sr and Nd isotope compositions (87Sr/86Sri
0.708â0.710; 143Nd/144Ndi 0.512â0.513). However, rocks
of the Cortegana Igneous Complex have low initial
87Sr/86Sr and high initial 143Nd/144Nd values suggesting
contamination by lower crustal rocks. Comparison of the
geochemical and geological features of igneous rocks in the
Aguablanca deposit and the Cortegana Igneous Complex
indicates that, although probably part of the same magmatic
system, they are rather different and the rocks of the
Cortegana Igneous Complex were not the direct source of
the Aguablanca deposit. Crustâmagma interaction was a
complex process, and the generation of orebodies was
controlled by local but highly variable factors. The model
for the formation of the Aguablanca deposit presented in
this study implies that dense sulfide melts can effectively
travel long distances through the continental crust and that
dilational zones within compressional belts can effectively
focus such melt transport into shallow environments
Post-orogenic shoshonitic magmas of the Yzerfontein pluton, South Africa: the 'smoking gun' of mantle melting and crustal growth during Cape granite genesis?
The post-orogenic Yzerfontein pluton, in the Saldania Belt of South Africa was constructed through numerous injections of shoshonitic magmas. Most magma compositions are adequately modelled as products of fractionation, but the monzogranites and syenogranites may have a separate origin. A separate high-Mg mafic series has a less radiogenic mantle source. Fine-grained magmatic enclaves in the intermediate shoshonitic rocks are autoliths. The pluton was emplaced between 533 ± 3 and 537 ± 3 Ma (LASF-ICP-MS UâPb zircon), essentially synchronously with many granitic magmas of the Cape Granite Suite (CGS). Yzerfontein may represent a high-level expression of the mantle heat source that initiated partial melting of the local crust and produced the CGS granitic magmas, late in the Saldanian Orogeny. However, magma mixing is not evident at emplacement level and there are no magmatic kinships with the I-type granitic rocks of the CGS. The mantle wedge is inferred to have been enriched during subduction along the active continental margin. In the late- to post-orogenic phase, the enriched mantle partially melted to produce heterogeneous magma batches, exemplified by those that formed the Yzerfontein pluton, which was further hybridized through minor assimilation of crustal materials. Like Yzerfontein, the small volumes of mafic rocks associated with many batholiths, worldwide, are probably also lowvolume, high-level expressions of crustal growth through the emplacement of major amounts of mafic magma into the deep crust.IS
Chemical Signatures of MeltâRock Interaction in the Root of a Magmatic Arc
Identification of meltârock interaction during melt flux through crustal rocks is limited to field relationships and microstructural evidence, with little consideration given to characterising the geochemical signatures of this process. We examine the mineral and whole-rock geochemistry of four distinct styles of meltârock interaction during melt flux through the Pembroke Granulite, a gabbroic gneiss from the Fiordland magmatic arc root, New Zealand. Spatial distribution, time-integrated flux of melt and stress field vary between each melt flux style. Whole-rock metasomatism is not detected in three of the four melt flux styles. The mineral assemblage and major element mineral composition in modified rocks are dictated by inferred PâT conditions, as in sub-solidus metamorphic systems, and time-integrated volumes of melt flux. Heterogeneous mineral major and trace element compositions are linked to low time-integrated volumes of melt flux, which inhibits widespread modification and equilibration. Amphibole and clinozoisite in modified rocks have igneous-like REE patterns, formed by growth and/or recrystallisation in the presence of melt and large equilibration volumes provided by the grain boundary network of melt. Heterogeneities in mineral REE compositions are linked to localisation of melt flux by deformation and resulting smaller equilibration volumes and/or variation in the composition of the fluxing melt. When combined with microstructural evidence for the former presence of melt, the presence of igneous-like mineral REE chemical signatures in a metamorphic rock are proposed as powerful indicators of meltârock interaction during melt flux
Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harsit Pluton, Eastern Turkey
We present elemental and Sr-Nd-Pb isotopic data for the magmatic suite (similar to 79 Ma) of the Harsit pluton, from the Eastern Pontides (NE Turkey), with the aim of determining its magma source and geodynamic evolution. The pluton comprises granite, granodiorite, tonalite and minor diorite (SiO(2) = 59.43-76.95 wt%), with only minor gabbroic diorite mafic microgranular enclaves in composition (SiO(2) = 54.95-56.32 wt%), and exhibits low Mg# (<46). All samples show a high-K calc-alkaline differentiation trend and I-type features. The chondrite-normalized REE patterns are fractionated [(La/Yb)(n) = 2.40-12.44] and display weak Eu anomalies (Eu/Eu* = 0.30-0.76). The rocks are characterized by enrichment of LILE and depletion of HFSE. The Harsit host rocks have weak concave-upward REE patterns, suggesting that amphibole and garnet played a significant role in their generation during magma segregation. The host rocks and their enclaves are isotopically indistinguishable. Sr-Nd isotopic data for all of the samples display I(Sr) = 0.70676-0.70708, epsilon(Nd)(79 Ma) = -4.4 to -3.3, with T(DM) = 1.09-1.36 Ga. The lead isotopic ratios are ((206)Pb/(204)pb) = 18.79-18.87, ((207)Pb/(204)Pb) = 15.59-15.61 and ((208)Pb/(204)Pb) = 38.71-38.83. These geochemical data rule out pure crustal-derived magma genesis in a post-collision extensional stage and suggest mixed-origin magma generation in a subduction setting. The melting that generated these high-K granitoidic rocks may have resulted from the upper Cretaceous subduction of the Izmir-Ankara-Erzincan oceanic slab beneath the Eurasian block in the region. The back-arc extensional events would have caused melting of the enriched subcontinental lithospheric mantle and formed mafic magma. The underplating of the lower crust by mafic magmas would have played a significant role in the generation of high-K magma. Thus, a thermal anomaly induced by underplated basic magma into a hot crust would have caused partial melting in the lower part of the crust. In this scenario, the lithospheric mantle-derived basaltic melt first mixed with granitic magma of crustal origin at depth. Then, the melts, which subsequently underwent a fractional crystallization and crustal assimilation processes, could ascend to shallower crustal levels to generate a variety of rock types ranging from diorite to granite. Sr-Nd isotope modeling shows that the generation of these magmas involved similar to 65-75% of the lower crustal-derived melt and similar to 25-35% of subcontinental lithospheric mantle. Further, geochemical data and the Ar-Ar plateau age on hornblende, combined with regional studies, imply that the Harsit pluton formed in a subduction setting and that the back-arc extensional period started by least similar to 79 Ma in the Eastern Pontides.Geochemistry & GeophysicsMineralogySCI(E)33ARTICLE4467-48716
- âŠ