11 research outputs found

    Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men

    Get PDF
    Aims: To test the hypothesis that high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) improve brown adipose tissue (BAT) insulin sensitivity.Participants and methods: Healthy middle-aged men (n = 18, age 47 years [95% confidence interval {CI} 49, 43], body mass index 25.3 kg/m(2) [95% CI 24.1-26.3], peak oxygen uptake (VO2peak) 34.8 mL/kg/min [95% CI 32.1, 37.4]) were recruited and randomized into six HIIT or MICT sessions within 2 weeks. Insulin-stimulated glucose uptake was measured using 2-[F-18] flouro-2-deoxy-D-glucose positron-emission tomography in BAT, skeletal muscle, and abdominal and femoral subcutaneous and visceral white adipose tissue (WAT) depots before and after the training interventions.Results: Training improved VO2peak (P =.0005), insulin-stimulated glucose uptake into the quadriceps femoris muscle (P =.0009) and femoral subcutaneous WAT (P =.02) but not into BAT, with no difference between the training modes. Using pre-intervention BAT glucose uptake, we next stratified subjects into high BAT (> 2.9 mu mol/100 g/min; n = 6) or low BAT (< 2.9 mu mol/100 g/min; n = 12) groups. Interestingly, training decreased insulin-stimulated BAT glucose uptake in the high BAT group (4.0 [2.8, 5.5] vs 2.5 [1.7, 3.6]; training*BAT, P =.02), whereas there was no effect of training in the low BAT group (1.5 [1.2, 1.9] vs 1.6 [1.2, 2.0] mu mol/100 g/min). Participants in the high BAT group had lower levels of inflammatory markers compared with those in the low BAT group.Conclusions: Participants with functionally active BAT have an improved metabolic profile compared with those with low BAT activity. Short-term exercise training decreased insulin-stimulated BAT glucose uptake in participants with active BAT, suggesting that training does not work as a potent stimulus for BAT activation

    Short-term hyperglycaemia causes non-reversible changes in arterial gene expression in a fully 'switchable' in vivo mouse model of diabetes

    No full text
    Aims/hypothesis Irreversible arterial damage due to early effects of hypo- or hyperglycaemia could account for the limited success of glucose-lowering treatments in preventing cardiovascular disease (CVD) events. We hypothesised that even brief hypo- or hyperglycaemia could adversely affect arterial gene expression and that these changes, moreover, might not be fully reversible. Methods By controlled activation of a 'switchable' c-Myc transgene in beta cells, adult pIns-c-MycER(TAM) mice were rendered transiently hypo- and then hyperglycaemic, after which they were allowed to recover for up to 3 months. Immediate and sequential changes in aortic global gene expression from normal glycaemia through hypo- and hyperglycaemia to recovery were assessed. Results Gene expression was compared with that of normoglycaemic transgenic and tamoxifen-treated wild-type controls. Overall, expression of 95 genes was significantly affected by moderate hypoglycaemia (glucose down to 2.5 mmol/l), whereas over 769 genes were affected by hyperglycaemia. Genes and pathways activated included several involved in atherogenic processes, such as inflammation and arterial calcification. Although expression of many genes recovered to initial pre-exposure levels when hyperglycaemia was corrected (74.9%), in one in four genes this did not occur. Quantitative reverse transcriptase PCR and immunohistochemistry verified the gene expression patterns of key molecules, as shown by global gene arrays. Conclusions/interpretation Short-term exposure to hyperglycaemia can cause deleterious and persistent changes in arterial gene expression in vivo. Brief hypoglycaemia also adversely affects gene expression, although less substantially. Together, these results suggest that early correction of hyperglycaemia and avoidance of hypoglycaemia may both be necessary to avoid excess CVD risk in diabetes
    corecore