80 research outputs found

    Formulation and Characterization of Patient-Friendly Dosage Form of Ondansetron Hydrochloride

    Get PDF
    Ondansetron hydrochloride is an intensely bitter antiemetic drug used to treat nausea and vomiting following chemotherapy. The purpose of the present work was to mask the taste of ondansetron hydrochloride and to formulate its patient-friendly dosage form. Complexation technique using indion 234 (polycyclic potassium with carboxylic functionality) and an ion-exchange resin was used to mask the bitter taste and then the taste-masked drug was formulated into an orodispersible tablet (ODT). The drug loading onto the ion-exchange resin was optimized for mixing time, activation, effect of pH, mode of mixing, ratio of drug to resin and temperature. The resinate was evaluated for taste masking and characterized by X-ray diffraction study and infrared spectroscopy. ODTs were formulated using the drug–resin complex. The developed tablets were evaluated for hardness, friability, drug content, weight variation, content uniformity, friability, water absorption ratio, in vitro and in vivo disintegration time and in vitro drug release. The tablets disintegrated in vitro and in vivo within 24 and 27 s, respectively. Drug release from the tablet was completed within 2 min. The obtained results revealed that ondansetron HCl has been successfully taste masked and formulated into an ODT as a suitable alternative to the conventional tablets

    Fluconazole

    No full text

    Paralysis caused by “nagging”

    No full text

    Identification of Hepatic Phospholipidosis Inducers in Sandwich-Cultured Rat Hepatocytes, a Physiologically Relevant Model, Reveals Altered Basolateral Uptake and Biliary Excretion of Anionic Probe Substrates

    No full text
    Drug-induced phospholipidosis (PLD) is characterized by phospholipid accumulation within the lysosomes of affected tissues, resulting in lysosomal enlargement and laminar body inclusions. Numerous adverse effects and toxicities have been linked to PLD-inducing drugs, but it remains unknown whether drug-induced PLD represents a distinct toxicity or cellular adaptation. In silico and immortalized cellular models have been used to evaluate the PLD potential of new drugs, but these systems have some limitations. The aims of this study were to determine whether primary sandwich-cultured hepatocytes (SCH) can serve as a sensitive and selective model to evaluate hepatic drug-induced PLD, and to evaluate the impact of PLD on the uptake and biliary excretion of probe substrates, taurocholate (TC) and rosuvastatin (RSV). Rat SCH were cultured for 48 h with prototypic hepatic PLD-inducing drugs, amiodarone (AMD), chloroquine (CHQ), desipramine (DES), and azithromycin (AZI), as well as the renal PLD inducer gentamicin (GTM). LysoTracker Red localization and transmission electron microscopy indicated enlarged lysosomal compartments and laminar body inclusions in SCH treated with AMD, CHQ, DES, and AZI, but not GTM, relative to control. PLD resulted in a 51–92% decrease in the in vitro biliary clearance of both TC and RSV; the biliary excretion index significantly decreased for TC from 88 to 35–73%. These data suggested that PLD significantly reduced both organic anion transporting polypeptide-mediated uptake, and bile salt export pump-mediated biliary transport processes. The current study demonstrates that the rat SCH system is a promising model to study hepatic PLD in vitro. Altered hepatic transport of anionic substrates secondary to drug-induced PLD is a novel finding
    • …
    corecore